Probability

- Based on our sample or other random process (as in the coin flipping or a toddler choosing Lego), we would like to make valid statements about the underlying population or quantity of interest
- Probability is one tool that will help us do that
- Probability is all about talking about the chance of something (an event happening or observing a particular thing)
- There is uncertainty associated with the event or observation, and probability helps us to quantify this

Definitions

- Experiment: An experiment can be any process, in a laboratory or otherwise, where we can observe the result of a process and the result of that process is uncertain.
- Events: things that can happen
- what's an example of an event when flipping a coin once? Four times?
- what's an example of an event of sampling six people's heights?
- Probability-function: a rule that assigns a valu $P(A)$ jo each event A. We know
- Probability is positive
- Probability is at most 1
- The sum of probablities of all possible events is 1

$$
\begin{aligned}
& \text { Lego example }
\end{aligned}
$$

Lego example
My son randomly draws out one vehicle

\#succeses
\# possibicick

Lego example

Let's define some events:

- $\mathrm{A}=$ "Choose a train"
- $\mathrm{B}=$ "Choose a vehicle that is blue"

What is $P(A)$? What is $P(B)$?
Probability is just counting!

Probability is just counting!

Additive / Union rule

What is $P(A$ or $B)$? That is the probability that the vehicle is a train or is the color blue?

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

Note that if A and B are mutually exclusive then they can't happen together so $P(A$ or $B)=P(A)+P(B)$.

Conditional probability

- The probability of something happening given we know something else
- $P(B \mid A)$ is conditional probability i.e. the probability of B given that A is true
- Lego examples
what is $P(B \mid A)$?
- what is the probability that the vehicle is a train given it has red wheels?
- what is the probability that the vehicle is white given it is a car ?

Conditional probability

Conditional probability is important for us

- What's the probability that someone work's remotely given they work in finance (vs hospitality?)
- What's the probability that someone graduates college given their parent's did?

Multiplicative / Intersection rule

What is $P(A$ and $B)$? That is the probability that the vehicle is a train and is the color blue?

$$
P(A \text { and } B)=P(A) \times P(B \mid A)
$$

Independence

If two events A and B are independent, then $P(A)$ is not affected by the condition B, and vice versa, so we can say that $P(A \mid B)=P(A)$ and likewise, $P(B \mid A)=P(B)$, so the multiplicative rule becomes

$$
P(A \text { and } B)=P(A) \times P(B)
$$

Complements

the complement of any event A is the event [not A], i.e. the event that A does not occur. It is denoted A^{c}.

Lego practice

$$
\begin{aligned}
& \begin{array}{l}
\text { go practice } \\
P(A)
\end{array}+P\left(A^{c}\right)=1 \\
& P\left(A^{c}\right)=1-P(A)
\end{aligned}
$$

