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Summary

Opioid addiction and overdoses are an ongoing crisis in North America. During the
1990s and 2000s, increases in overdoses were mostly observed in the non-Hispanic
population. However, in more recent years, the proliferation of synthetic opioids,
such as fentanyl, has contributed to substantial death toll increases particularly in the
non-Hispanic population. While there has been much previous research on under-
standing trends of opioid-related deaths, there has been less focus on understanding
disparities and trends at opioid-related stages before death, namely opioid use, mis-
use, and non-fatal overdose and treatment. We propose a theoretical framework
in understanding the transitions that lead to illicit opioid use and overdose deaths
using a Bayesian multistate approach. Our framework’s multistate model divides
opioid use stages into prescription opioid use, opioid misuse, addiction treatment,
and opioid-induced death. Bayesian back-calculation allows us to estimate time-
variant transition probabilities and incidences. Simulation studies demonstrated that
our framework can retract the transition probabilities with informative priors while
its incidence estimates may be imprecise. We then applied the proposed framework
to non-Hispanic black and non-Hispanic white populations in the United States from
2015 to 2019 integrating multiple sources of public data. We analyzed the posterior
estimates of the transition probabilities to study the disparities in opioid use between
the two groups. The analysis result suggests that the non-Hispanic black population
faced higher, and considerably increasing, risk of opioid-induced deaths conditional
on using opioids in an illicit manner compared to the non-Hispanic white population.
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1 INTRODUCTION

Opioid addiction and overdoses are an ongoing crisis in North America. In 2020, 68 630 people died from drug overdose involv-
ing opioids in the United States1, a 38% increase from the previous year. During the same period 6 415 people died in Canada
from opioid-related overses2, a 73% increase from the previous year. Historically, there have been marked racial disparities in
the opioid epidemic. During the 1990s and early 2000s, increases in overdoses were mostly observed in the non-Hispanic white
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population.3 However, in more recent years, the proliferation of synthetic opioids, such as fentanyl, has contributed to the ris-
ing death toll rates for all populations, with particularly substantial increases in the non-Hispanic black population, with other
important differences by age and geographic region.4

While there has been much previous research on understanding trends of opioid-related deaths by key demographic sub-
groups3,5,6, there has been less focus on understanding disparities and trends at opioid-related stages before death, namely opioid
use, misuse, and non-fatal overdose and treatment. Some work has incorporated the intermediate stages. For example, Pitt et al.7

used a dynamic compartmental model to describe the transitions between different stages divided based on prescription opioid
use and addiction, treatment, and levels of pain. Battista et al.8 suggested a compartmental model that described the dynam-
ics between prescription opioid users and those suffering from opioid addiction. However, in both cases, they used individually
estimated transition rates from external sources. To date there is not a clear unified picture of the rate at which individuals tran-
sition from prescription to misuse, then potentially from misuse to overdose, and how this differs across racial and ethnic lines.
Such information would be valuable in designing targeted interventions to help curb opioid addiction and prevent loss of life.

The challenge with estimating such transition rates is one of data availability. While good quality cause-of-death data generally
exist in the United States and Canada, the data available to understand population-level incidence of opioid use, and opioid
misuse, is not widely available. Partial information may be available from surveys, but these data have large levels of uncertainty
compared to data from vital registration systems.

In this paper, we propose a theoretical framework in understanding the transitions that lead to illicit opioid use and overdose
deaths using a Bayesian multistate modelling approach. The model utilizes different sources of data on opioid use and deaths
in a single framework, and allows reliable estimates of all transition rates. The method builds on work by Brookmeyer and
Gail9 who used a back-calculation technique to estimate unobserved HIV infection rates from observed AIDS diagnosis rates.
Sweeting et al.10 then proposed a Bayesian inference of the technique. Our framework provides probabilistic estimates for the
transition probabilities in a multistate model that captures both prescription-initiated and illicitly-initiated opioid users. The
Bayesian inference incorporates partial observations of interim transitions to augment data on opioid-induced mortality.

In the following section, we first survey the existing literature on estimating prevalence and incidence of illicit opioid use
as well as those that study transitions in multistate models in other contexts. The Method section then introduces the proposed
framework in detail and the Simulation section presents simulation studies to investigate the feasibility and robustness of the
proposed framework. The Case study section follows where we apply the method to the opioid crisis in the United States to
study the racial disparities in the transition behaviour. Finally, we conclude the paper with key implications and limitations of
the proposed framework in the Discussion.

2 RELATED WORK

2.1 Compartmental modelling of drug addiction dynamics
Quantifying the occurrence rate of new cases (i.e., incidence) and the frequency of current cases (i.e., prevalence) are important
goals for understanding the spread of drug addiction11. To quantify the incidence and prevalence of opioid addiction, we may
utilize compartmental models which are popular in epidemiology for modelling infectious diseases. We find such models used for
opioid addiction in the literature where each drug user is analogous to a contagion that spread the innovation of the drug12,13,14,15.
They provide a conceptual framework useful for studying the epidemiology of opioid addiction and overdose deaths.

In epidemiology, compartmental models describe population classes in the epidemic of an infectious disease.16 For example,
classic SIR models divide the population into the susceptible (S), the infective (I), and the recovered (R). The adoption of
epidemiological models for opioid addiction started as early as 1979 when Douglas and Stewart13 adopted a simplified SIR
model to study the spread of heroin use. The simplified model described the heroin usage progression with three compartments -
the susceptible, the affected including both drug users and non-users involved in the proliferation of the drug, and those removed
from the affected group for any reason. In 2007, White and Comiskey15 introduced a fully adopted SIR model for the global
heroin epidemic. The White-Comiskey model described the susceptible, the drug users who are not in treatment, and the drug
users who are in treatment. Furthermore, the model depicted inflows to the susceptible group and outflows from each of the
three states. The outflows included both natural and drug-related deaths as well as other types of removals. Figure 1 displays the
compartments and the transitions defined by White and Comiskey.15

There have been efforts to extend the White-Comiskey model to capture a more realistic and detailed dynamics of the spread of
opioid use. Rossi17 adopted a Mover-Stayer model from HIV/AIDS epidemic modelling to dividing the susceptible population
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Figure 1 An opiate-using career model by White and Comiskey15. 𝑆, 𝑈1, and 𝑈2 denote the susceptible population, drug users
not in treatment, and drug users in treatment respectively. Λ is the number of individuals entering the susceptible population, 𝑁
the total population, 𝜇 the natural death rate, and 𝛿1 and 𝛿2 drug-related removal rates. 𝛽1, 𝑝, and 𝛽2 represent the probabilities
for becoming a drug user, entering treatment, and relapsing to untreated drug use from treatment respectively.

into the Stayers — those that are not at risk due to their “prudent” behaviour — and the Movers who are at risk. The proposed
model also added states to describe the latency period during which an individual’s drug usage unobserved. The model consists
of six compartments excluding the general population and deaths. On the other hand, Djilali et al.18 generalized the White-
Comiskey model by introducing a non-linear incidence and treat-age affect for the relapse probability. The treat-age affect
captures the behavioural change of the drug users under treatment. The presented non-linear incidence function depends on
both the susceptible population size (𝑆) and the number of drug users not in treatment (𝑈1). The authors present the conditions
for the non-linear incidence function that allow asymptotic stability of the drug-free equilibrium and asymptotic stability of the
endemic equilibrium.

These conceptual models capture the size of different epidemiological classes, or compartments, of the population at a given
time (prevalence) and the rate of transition between these compartments (incidence). They use mathematical expressions to
relate the prevalence and incidence. In the following subsections, we discuss how back-calculation techniques are used to provide
empirical estimates for the prevalence and incidence.

2.2 Estimation of prevalence and incidence via back-calculation
Back-calculation techniques allow empirical estimation of parameters within opioid incidence and prevalence models. Brook-
meyer and Gail9 first proposed a back-calculation technique to estimate unobserved HIV incidences from AIDS diagnosis counts.
The technique has since been adopted to estimate the unobserved drug misuse incidence and prevalence.19,20 The methods de-
fine the dynamics of a contagious innovation’s proliferation with a convolution relationship between the incidence, the transition
distribution, and the endpoint distribution. They assume that observed counts at an endpoint follow a probabilistic distribution
defined by the convolution relationship and trace back the relationship to estimate the incidence and prevalence.

de Angelis et al.19 used opiate-related deaths recorded in England between 1968 and 2000 to estimate new opiate injections.
The back-calculation method assumed fixed mortality rates that are age-specific and fixed cessation rates per year. These values
served as the endpoint counts in their study. In the case of the cessation rates, the study used three different estimates to account
for uncertainties and differences from different sources. The study modeled drug abusers as a single state and estimated the
age-specific incidences using a maximum likelihood algorithm.

A study by Sánchez-Niubò et al.20 similarly adopted the back-calculation method to estimate the unobserved heroin incidences
in Spain between 1971 and 2005. Figure 2 reconstructs the proposed multistate model diagram from the paper. The study based
its estimates on the incidence of new opioid treatments instead of mortality data. The authors used a mix of observed data as well
as independent estimates for interim transition rates (𝑝𝑡 and 𝑞𝑡). These values were, in turn, used to estimate ℎ𝑡 by maximizing
the Poisson likelihoods of the records of new opioid treatment admissions.

The back-calculation methods allow study of long-term trends in incidence and prevalence of opioid misuse. They are par-
ticularly useful in the context of opioid misuse and overdose as there is limited data availability on incidence and prevalence
due as they are difficult to measure directly and highly biased when reported.19 On the other hand, the maximum likelihood ap-
proaches do not provide direct estimation of the uncertainties associated with the estimates. Instead, both groups19,20 constructed
confidence intervals based on resamples generated using bootstrap techniques.



4 Moon and Alexander

State 1:
Heroin Use

State 2: First
treatment ever

State3: Left
heroin use

ht pt

qt

Figure 2 Multistate model diagram by Sánchez-Niubò et al.20. Parameter ℎ𝑡 denotes the expected number of people starting
heroin use, 𝑝𝑡 transition rate entering treatment for the first time, and 𝑞𝑡 transition rate leaving heroin use without entering
treatment, at time 𝑡.

2.3 Extending back-calculation with the Bayesian approach
Aalen et al.21 extended the original back-calculation method by Brookmeyer and Gail9 to incorporate a multistate Markov
modelling of HIV progression. Since then, Bayesian back-calculation methods have emerged extending the original model
further. The Bayesian approach allow probabilistic estimation of each parameter of interest and provide the level of uncertainty
associated with the parameter estimate.

1. Early Stage
2. Interme-
diate Stage

3. Ad-
vanced Stage

4. AIDS
Diagnosis

5. HIV
diagnosis

hi q1,2 q2,3 q3,4

di,1
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Figure 3 A multistate model for HIV progression.10 ℎ𝑖 represents new HIV infections during 𝑖th time interval. 𝑞𝑗,𝑘 represents
HIV progression rates among undiagnosed HIV carriers from 𝑗 th stage to 𝑘th stage based on CD4 counts. The model assumes
undiagnosed HIV carriers at 𝑗 th stage are diagnosed with HIV with a probability of 𝑑𝑖,𝑗 during 𝑖th time interval.

Sweeting et al.10 first proposed a Bayesian multistate model for back-calculation to estimate the HIV incidences. Figure 3
shows the multistate HIV progression model used. The Bayesian approach provided posterior distribution estimates for the
incidences and HIV diagnosis probabilities from observed AIDS and HIV diagnoses counts. Their simulation study demonstrated
that the Bayesian provided reasonable posterior estimates that traced the true parameter values. The authors also demonstrated
incorporating additional data on HIV diagnoses at different stages to further improved the estimates. Birrell et al.22 adopted
the method to investigate other key epidemiological quantities for an updated data of the same epidemic. They showed that the
method can inform distributions of the time-to-diagnosis, the time-since infection, and the prevalence of undiagnosed infection.

Brizzi et al.23 further extended the Bayesian multistate model for back-calculation to estimate age and time dependent HIV
incidences. The extended method modeled the infection process as a two-dimensional non-homogeneous Poisson process with
both age and time dependent infection rates. The method no longer assumes a first-order Markov chain, but assumes that progres-
sion and diagnosis probabilities depend on age and time at infection. While the additional dynamics substantially complicated
the model, the authors reported reasonably well-fitting posterior estimates using bivariate splines for the log-incidence surface.23

Extending the back-calculation method with a Bayesian multistate model provided model-based estimation of the uncertainties
via posterior distributions while incorporating additional data into the model. In this study, we adopt and extend the Bayesian
multistate back-calculation in the context of the drug use and mortality.
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3 METHOD

3.1 A multistate model for opioid use and mortality
We propose a discrete-time multistate model to describe stages of opioid use as shown in Figure 4. The model depicts the
transitions in discrete time intervals

(

𝑡𝑖−1, 𝑡𝑖
]

for 𝑖 = 1,… , 𝑇 and incorporates two independent entry points to distinguish those
those who have used prescription opioids before misusing opioids from those who initiate illicit opioid use directly. 𝑟(1)𝑖 denotes
the expected rate of new prescription opioid users entering State (1) during

(

𝑡𝑖−1, 𝑡𝑖
]

. 𝑟(2)𝑖 denotes the expected rate of new illicit
opioid users entering State (2) in

(

𝑡𝑖−1, 𝑡𝑖
]

. Both entries represent occurrence rates of opioid users (i.e., incidences) among those
who never used opioid prior to entering the model.

(1) Prescription
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(3) Treatment
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Figure 4 Transition diagram of the multistate model. 𝑟(1)𝑖 and 𝑟(2)𝑖 represent the incidences for prescription and illicit opioid users
respectively during

(

𝑡𝑖−1, 𝑡𝑖
]

. 𝑝(1)𝑖 , 𝑝(2)𝑖 , and 𝑝(3)𝑖 denote the transition probabilities between the states indicated by the arrows
during

(

𝑡𝑖−1, 𝑡𝑖
]

. 𝑢𝑖 denotes the non-opioid-related mortality rate.

𝑝(𝑚)𝑖 for 𝑚 = 1, 2, 3 denote the transition probabilities between different states in the model during
(

𝑡𝑖−1, 𝑡𝑖
]

. 𝑝(1)𝑖 represents
the probability of misusing opioids among those who have used prescription opioids. The probability of an illicit opioid user
entering treatment, State (3), is denoted by 𝑝(2)𝑖 . Both 𝑝(1)𝑖 and 𝑝(2)𝑖 are conditional on not having deceased due to reasons unrelated
to opioid overdose by 𝑡𝑖+1. 𝑝

(3)
𝑖 represents the probability of experiencing an overdose death, State (4), among those who have

misused opioids by
(

𝑡𝑖−1, 𝑡𝑖
]

. The probability is conditional on not having entered treatment in addition to not having deceased
due to other reasons. 𝑢𝑖 represents the mortality rate that are unrelated to opioid overdose.

We emphasize that our proposed model aims to provide an aggregate depiction and that it focuses on a subset of all possible
transitions. For example, we assume that State (4) is an absorbing state. However, those who receive treatment may start using
illicit opioids again. Similiarly, the model also does not distinguish those who stopped using opioids without entering a treatment
facility from those who are actively using opioids. The model simplifies the real-world with these omissions but captures the
main transitions of interest.

3.2 The back-calculation of the incidences and transition probabilities
Back-calculation techniques allow estimating unobserved occurrence rate of new cases based on observed endpoint counts in
a multistate model. The convolution relationship between the incidences, transition distribution, and endpoint counts is central
to back-calculation. For example, Equation 1 describes a homogeneous convolution relationship in a discrete-time setting with
disjoint sub-intervals,

(

𝑡𝑖−1, 𝑡𝑖
]

for 𝑖 = 1,… , 𝑇 .

𝜇𝑖 =
𝑖

∑

𝓁=1
ℎ𝓁𝑓𝓁,𝑖, (1)

where 𝜇𝑖 is the expected number of the endpoint counts in the time interval
(

𝑡𝑖−1, 𝑡𝑖
]

, ℎ𝓁 is the expected incidences in the interval
(

𝑡𝓁−1, 𝑡𝓁
]

, and 𝑓𝓁,𝑖 is the probability that an individual infected in
(

𝑡𝓁−1𝑗, 𝑡𝓁
]

arrives at the endpoint in
(

𝑡𝑖−1, 𝑡𝑖
]

, for 𝑖 = 1,… , 𝑇
and 𝓁 ≤ 𝑖. The back-calculation technique allows reconstruction of the expected incidences based on the observed number of
endpoint arrivals and transition distributions. For example, the method is used to estimate of the incidences of HIV infections,
ℎ𝓁 , from the observed clinical diagnosis of AIDS, 𝜇𝑖, and the incubation distribution that describe the progression from infection
to AIDS, 𝑓𝓁,𝑖.10

We introduce a back-calculation technique that is tailored to estimating the transition distributions as well as the incidences
for opioid users. Equation 2 and Equation 3 describe the dynamics of the proposed multistate model. 𝝀𝑖 is a 4 × 4 matrix whose
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(𝑚, 𝑛)th entry represent the transition probability from State (𝑚) to State (𝑛) during
(

𝑡𝑖−1, 𝑡𝑖
]

. Equation 2 defines the probabilities.

(

𝝀𝑖
)

𝑚,𝑛 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

1 − 𝑢𝑖
)

(

1 − 𝑝(1)𝑖

)

𝑚 = 𝑛 = 1
(

1 − 𝑢𝑖
)

(

1 − 𝑝(2)𝑖

)(

1 − 𝑝(3)𝑖

)

𝑚 = 𝑛 = 2
(

1 − 𝑢𝑖
)

𝑝(𝑚)𝑖 𝑚 ∈ {1, 2}, 𝑛 = 𝑚 + 1
(

1 − 𝑢𝑖
)

(

1 − 𝑝(2)𝑖

)

𝑝(3)𝑖 𝑚 = 2, 𝑛 = 4

0 otherwise

(2)

For example, a prescription opioid user in State (1) begins to use opioids in a manner that is not directed by their doctor with a
probability of

(

𝜆𝑖
)

1,2 =
(

1 − 𝑢𝑖
)

𝑝(1)𝑖 during
(

𝑡𝑖−1, 𝑡𝑖
]

. The same person is then at risk of a opioid-induced death during
(

𝑡𝑖, 𝑡𝑖+1
]

with a probability of
(

𝜆𝑖
)

2,4 =
(

1 − 𝑢𝑖+1
)

(

1 − 𝑝(2)𝑖+1

)

𝑝(3)𝑖+1.

𝚲𝑖 = 𝝀𝑇
𝑖 𝚲𝑖−1 +

(

𝑟(1)𝑖 , 𝑟(2)𝑖 , 0, 0
)𝑇

(3)
for 𝑖 = 1,… , 𝑇 .

3.3 Bayesian inference of transition probabilities and incidences
We use Bayesian inference to estimate the transition probabilities and the incidences. We assume that we have reliable yearly
data on opioid-induced mortality counts, opioid addiction treatment initiate counts, and opioid misuse initiate counts. We also
assume the non-opioid-induced mortality rates are known. Let 𝑥𝑖, 𝑦𝑖, an 𝑤𝑖 be the observed counts for new opioid-induced
deaths, treatment initiates, and misuse initiates for each

(

𝑡𝑖−1, 𝑡𝑖
]

. We assume such data are readily available and demonstrate a
real-world application using multiple data sources in Section 5.

To simplify notations, we let 𝒓𝑖 =
(

𝑟(1)𝑖 , 𝑟(2)𝑖

)𝑇
and 𝒑𝑖 =

(

𝑝(1)𝑖 , 𝑝(2)𝑖 , 𝑝(3)𝑖

)𝑇
. We model the observed counts using Poisson

distributions as shown in Equations 4, 5, and 6 with the means defined using the back-calculation model.
(

𝑥𝑖 ||𝚲𝑖−1, 𝒓𝑖,𝒑𝑖, 𝑢𝑖
)

∼ Poisson
(

𝑋𝑖
)

where 𝑋𝑖 = Λ𝑖,4 for 𝑖 = 1,… , 𝑇
(4)

(

𝑦𝑖 ||𝚲𝑖−1, 𝒓𝑖,𝒑𝑖, 𝑢𝑖
)

∼ Poisson
(

𝑌𝑖
)

where 𝑌𝑖 = Λ𝑖,3 for 𝑖 = 1,… , 𝑇
(5)

(

𝑤𝑖
|

|

Λ𝑖−1, 𝒓𝑖,𝒑𝑖, 𝑢𝑖
)

∼ Poisson
(

𝑊𝑖
)

where 𝑊𝑖 = Λ𝑖−1,1
(

1 − 𝑢𝑖
)

𝑝(2)𝑖 + 𝑟(2)𝑖 for 𝑖 = 1,… , 𝑇
(6)

We use a hierarchical Bayesian framework to specify the expected incidences 𝒓𝑖 and transition probabilities 𝒑𝑖. To allow
smooth curves over time, we model 𝛾 (⋅)𝑖 = log

(

𝑟(⋅)𝑖
)

and 𝛿(⋅)𝑖 = logit
(

𝑝(⋅)𝑖
)

as Gaussian random walk processes. Equation 7 and
Equation 8 describe the random walk models.

𝛾 (𝑚)𝑖
|

|

|

𝛾 (𝑚)𝑖−1 ∼ 𝑁
(

𝛾 (𝑚)𝑖−1, 𝜎
2
𝛾

)

(7)

𝛿(𝑛)𝑖
|

|

|

𝛿(𝑛)𝑖−1 ∼ 𝑁
(

𝛿(𝑛)𝑖−1, 𝜎
2
𝛿

)

(8)
for 𝑚 = 1, 2, 𝑛 = 1, 2, 3, and 𝑖 = 2, 3,… , 𝑇 . We specify the prior distributions of standard deviations of the Gaussian random
walks 7 and 8, 𝜎𝛾 and 𝜎𝛿 , using half-normal distributions with standard deviations 𝜈𝛾 and 𝜈𝛿 respectively. The hyperparameters
𝒓0, 𝒑0, 𝜈𝛾 , and 𝜈𝛿 are specified as part of a Bayesian analysis. The initial prevalence of opioid prescription users, Λ0,1, and those
who have misused opioids, Λ0,2, are also specified as part of a Bayesian analysis. For convenience, we specify Λ0,3 = Λ0,4 = 0.

3.4 Incorporating partial data on transitions
In addition to the count data, we extend the model by assuming that we partially observe the transitions over the multistate model.
This allows us to incorporate data on transitions that are observed on a subset of the population of interest. For example, the
U.S. National Survey on Health and Drug Use24 captures information on heroin use, prescription opioid misuse, and addiction
treatments. The survey has included questions on regular use of prescription opioids since 2015.24 From the survey responses,
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we can infer the proportions of prescription opioid users who started using illicit opioids and illicit opioid user who entered a
treatment facility in each year.

We denote the partially observed counts at 𝑡𝑖−1 of those on prescription opioids as 𝑆 (1)
𝑖−1 and of those misusing opioids as 𝑆 (2)

𝑖−1.
We let 𝑠(1)𝑖 and 𝑠(2)𝑖 denote the number of observed transitions to illicit opioid use out of those in 𝑆 (1)

𝑖−1 and the number of observed
transitions to treatment out of those in 𝑆 (2)

𝑖−1, respectively by 𝑡𝑖. Assuming representativeness of the observations, we incorporate
the observed partial transitions with the normal approximation described in Equation 9.

𝑝(𝑚),part𝑖 ∼ 𝑁
(

𝑝(𝑚)𝑖 + 𝜙(𝑚), 𝜂(𝑚)𝑖−1

)

where 𝑝(𝑚),part𝑖 =
𝑠(𝑚)𝑖

𝑆 (𝑚)
𝑖−1

and 𝜂(𝑚)𝑖−1 =
𝑝(𝑚)𝑖

(

1 − 𝑝(𝑚)𝑖

)

𝑆 (𝑚)
𝑖−1

for 𝑚 = 1, 2 and 𝑖 = 2, 3,… , 𝑇

(9)

𝜙(1) and 𝜙(2) allows any bias introduced by survey estimates. There may also be systematic bias introduced during the admin-
istration of surveys. Even when surveys guarantee unbiased estimates, the proportion of two estimators does not guarantee an
unbiased estimator.

We specify the priors for𝜙(1) and𝜙(2) as part of a Bayesian analysis. If we have some prior knowledge about the likely direction
of systematic bias of introduced during data collection, this information can be encoded into the model through the prior. For
example, if we believe the survey under-reports illicit opioid use, we may specify the priors for 𝜙(⋅) to follow a truncated normal
distribution between -1 and 1 with a negative mean value.

4 SIMULATION

In this section, we investigate the feasibility and robustness of the proposed methods described in Section 3 using a set of sim-
ulated data. Table 1 lists the ‘true’ parameters used for the simulation. log

(

𝑟TRUE,(𝑚)0

)

and logit
(

𝑝TRUE,(𝑚)0

)

were used as initial
means in the Gaussian random walks for log-incidences and logit-transition probabilities, respectively. The random walks sim-
ulated incidences and transition probabilities with standard deviations 𝜎TRUE

𝛾 and 𝜎TRUE
𝛿 for time periods

(

𝑡𝑖−1, 𝑡𝑖
]

, 𝑖 = 0,… , 20.
We then used the simulated incidences and probabilities to simulate opioid-use progression data following the multistate model
defined by Equation 2. We assumed a time-invariant non-opioid-induced mortality rate per time period, 𝑢TRUE. The counts of
opioid-induced deaths, 𝑥𝑖, treatment initiates, 𝑦𝑖, and opioid misuse initiates, 𝑤𝑖 were recorded to simulate observed data for
𝑖 = 1,… , 20. Additionally, we simulated a survey where a random sub-sample of the simulated individuals were captured. We
sampled 5% among those using prescription opioids and those using illicit opioids at each time period. All codes used for the
simulation studies are available at https://github.com/mjmoon/bmm-opioid.

4.1 Feasibility of the method
We investigated the feasibility of the method by fitting models using priors that mimic the ‘true’ parameters used to simulate the
data. The parameter values used for initial values were the same values as the simulation parameters - 𝒓0 =

(

𝑟TRUE,(1)0 , 𝑟TRUE,(2)0

)

,

𝒑0 =
(

𝑝TRUE,(1)0 , 𝑝TRUE,(2)0 , 𝑝TRUE,(3)0

)

, 𝜎𝛾0 = 𝜎TRUE
𝛾 , and 𝜎𝛿0 = 𝜎TRUE

𝛿 . For the hyperparameters of the random walks, we use
non-informative half-normal priors with 𝜈𝛾 = 1 and 𝜈𝛿 = 1. For 𝜙(1) and 𝜙(2), we utilized non-informative priors using stan-
dard normal distributions truncated on (−1, 1). We used RStan’s25,26 implementation of No-U-Turn sampler27 to estimate the
posterior distributions with and without the partial data on transitions from the simulated survey data.

Figure 5 displays the estimation results for the transition probabilities and the incidences. The left column is the result from
incorporating the ratio estimates, 𝑝(1),part𝑖 and 𝑝(2),part𝑖 , from the simulated survey data, and the right column the result without
the ratio estimates.

Incorporating the ratio estimates was the most beneficial in estimating the transition probabilities from prescription to illicit
use of opioids, 𝑝(1)𝑖 . Without the ratio estimates, the posterior medians remained relatively constant over time. The 95% credible
intervals also missed 15 out of the 20 simulation parameters. On the other hand, the posterior distributions that incorporated
the ratio estimates successfully traced the simulation parameters of the target values over time. The 95% credible intervals

https://github.com/mjmoon/bmm-opioid
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With ratio estimates Without ratio estimates

r i

(1)

r i

(2)

p i

(1)

p i

(2)

p i

(3)

1 10 20 1 10 20

      0

240 000

     0

10 000

0.027

0.096

0.076

0.140

0.004

0.005

Simulated Posterior median Missed Ratio estimates 95% CI

Figure 5 Simulated true values and posterior medians with 95% credible intervals for the incidences and transition probabilities
using the baseline priors. The left column displays results from the analysis that incorporates the ratio estimates based on
simulated surveys. Without the ratio estimates, the model estimates for 𝑝(1)𝑖 remain centred around the initial value over time
and the credible intervals miss the true values.

were smaller and contained the simulation parameters for all but 1 time period. The posterior distributions for other transition
probabilities and incidences show very little difference between the two columns in Figure 5.

The result also shows a better performance at estimating the transition probabilities in comparison to estimating the incidences.
Regardless the use of ratio estimates, the credible intervals for the incidences increased exponentially with time. In both cases,
the posterior medians consistently overestimated the opioid prescription incidences, 𝑟(1)𝑖 , while consistently underestimating
the direct opioid misuse incidences, 𝑟(2)𝑖 for time periods with 𝑖 = 7 and beyond. In contrast, the intervals for the transition
probabilities remained relatively stable.

The feasibility study reveals both optimistic results and limitations of the proposed framework. With the ratio estimates incor-
porated, the framework was capable of making reliable inference about the transition probabilities. For all transition probabilities,
the posterior medians traced the parameters over time. It is also notable that the posterior distributions remained consistently
closer to the parameters than the ratio estimates. The inferences on the incidences were not as reliable over time. The poste-
rior distributions grew exponentially with time making the inference about them ambiguous for the latter half of the periods.
While the framework may provide reasonable estimates for the short periods, we emphasize that our focus is on the transition
probabilities.

4.2 Sensitivity to prior choices
We conducted a sensitivity analysis to investigate the proposed framework’s robustness to prior choices. We considered the
model with ratio estimates from Section 4.1 as the reference model, and fitted models with a subset of priors deviated from the
reference model at different levels each time. We considered the following cases using 𝛼 ∈ {0.5, 2}.
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(SA1) 𝜈𝛾 = 𝛼 ⋅ 𝜈∗𝛾 where 𝜈∗𝛾 is the 𝜈𝛾 value used in the reference model

(SA2) 𝜈𝛿 = 𝛼 ⋅ 𝜈∗𝛿 where 𝜈∗𝛿 is the 𝜈𝛿 value used in the reference model

(SA3) 𝒓0 = 𝛼 ⋅
(

𝑟TRUE,(1)0 , 𝑟TRUE,(2)0

)

(SA4) 𝒑0 = 𝛼 ⋅
(

𝑝TRUE,(1)0 , 𝑝TRUE,(2)0 , 𝑝TRUE,(3)0

)

In all scenarios, we fitted models incorporating the ratio estimates and using the same algorithm as the reference model.

(SA1) (SA2) (SA3) (SA4)

r i

(1)

r i

(2)

1 10 20 1 10 20 1 10 20 1 10 20

  1 000

 10 000

100 000

    10

   100

 1 000

10 000

α = 0.5 α = 2 Reference Simulated

Figure 6 95% credible intervals of the incidences from the sensitivity analysis cases. For each case, we considered doubling the
priors, 𝛼 = 2, and halving, 𝛼 = 0.5. The intervals are plotted in log-scale to highlight the deviations. In all cases, the intervals
contain the simulated parameters despite deviations from the reference model’s intervals.

Figure 6 displays the effects of the deviations in priors on the incidence posterior distributions. The dotted lines and dashed
lines represent the 95% credible intervals from sensitivity analysis models with 𝛼 = 2 and 𝛼 = 2 respectively. The reference
model’s credible intervals are shown in gray shades and the simulated parameters as points for comparison. Using different
values of 𝜈𝛾 in (SA1) and different 𝒓0 values in (SA3) caused minor deviations in the credible intervals. While these priors
directly concern the incidences over time, the prior choices did not cause significant differences in the posterior distributions.
Using different values of 𝜈𝛿 which concerns how transition probabilities change over time in (SA2) made even less difference
on the incidence estimates. In contrast, changing the initial transition probabilities, 𝒑0, in (SA4) resulted in the largest amount
of deviations from the reference model. However, the overall trend remained consistent with the reference model.

Figure 7 shows of the transition probability posterior distributions resulting from the sensitivity analysis. Changing 𝜈𝛾 in
(SA1), 𝜈𝛿 in (SA2), and 𝒓0 in (SA3) did not result in any visible deviations in the posterior distributions from those of the
reference model. Changing the initial transition probabilities, 𝒑0, in contrast, had clear effects on the posterior distributions. In
particular, the effects of shifting the priors sustained throughout the 20 time periods for the transition probabilities from opioids
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(SA1) (SA2) (SA3) (SA4)

p i

(1)

p i

(2)

p i

(3)

1 10 20 1 10 20 1 10 20 1 10 20

0.008

0.167

0.069

0.153

0.002

0.011

α = 0.5 α = 2 Reference Simulated

Figure 7 95% credible intervals of the transition probabilities from the sensitivity analysis cases. For each case, we considered
doubling the priors, 𝛼 = 2, and halving, 𝛼 = 0.5. While changing other priors did not make any visible difference in the pos-
terior distributions, updating the initial transition probabilities, (SA4), resulted in visible deviations from the reference model’s
intervals. In particular, the credible intervals for 𝑝(1)𝑖 from (SA4) consistently miss the simulated parameters.

prescription to misuse, 𝑝(1)𝑖 . The posterior distributions of 𝑝(2)𝑖 and 𝑝(3)𝑖 displays the effects of the shifts in the initial values but
the effects do not last long. They were consistent with the reference posterior distributions within 2 to 5 time periods.

The proposed framework was reasonably robust to prior choices for the random walk variances and the initial values for the
incidences. However, it is sensitive to the choice of the initial transition probabilities. This suggests that the framework would
benefit from informative priors for the initial transition probabilities. In the case where informative priors are not available, the
inference about the transition probabilities over time must should be done with caution. In particular, the posterior distributions
of 𝑝(1)𝑖 maybe biased over all time periods.

5 CASE STUDY: THE OPIOID USE IN THE U.S.

We demonstrate a real-world application of our proposed model to the opioid use and related mortalities in the United States
between 2015 and 2019. The update to include questions on regular use of prescription opioids in 201524 allowed the application
of the extended method discussed in Section 3.4. We applied the model to compare the population-level progressions between
non-Hispanic black and non-Hispanic white population.

5.1 Data
We utilized multiple sources of data for the case study. We used the U.S. Mortality Multiple Cause Files28 to extract opioid-
induced mortality counts while we utilized the CDC Wonder interface29 for general mortality rates and population counts.
We derived other opioids use related counts and partial progression rates from the National Survey on Drug Use and Health
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(NSDUH).30 From each source, we collected separate data sets for non-Hispanic black and non-Hispanic white populations
among those whose age was 12 or older recorded between 2015 and 2019.

We derived the opioid-induced mortality counts from the U.S. Mortality Multiple Cause Files.28 The International Classifi-
cation of Disease, Tenth Revision (ICD-10) codes reported in the files identify underlying causes of death and multiple causes
of death. We followed the criteria used by Kumiko et al.4 and used underlying cause-of-death codes X40-44 (unintentional),
X60-64 (suicide), X85 (homicide), and Y10-Y14 (undetermined intent) to identify deaths caused by acute toxicity from drugs.
Among the drug-related deaths, we identified those related to opioid using multiple cause-of-death codes: opium (T40.0), heroin
(T40.1), natural opioid analgesics (T40.2), methadone (T40.3), synthetic opioid analgesics other than methadone including drugs
such as fentanyl and tramadol (T40.4), or other and unspecified narcotics (T40.6). They inform the opioid-induced mortality
counts, 𝑥𝑖 for 𝑖 = 1, 2… , 5, to our proposed model. The general mortality rates, 𝑢𝑖 for 𝑖 = 1, 2… , 5, were collected from the
CDC Wonder.29

We relied on NSDUH30 to derive the annual opioid misuse treatment initiate counts. We matched the recorded age groups of
the survey participants and their responses to the question "How old were you when you first received treatment or counseling
for your drug use?" among those who indicated that they had ever misused prescription opioids or use heroin. We used sample
weights of the matched participants to estimate the yearly drug addiction treatment initiates. While we recognize the aggregation
of individual age and the lack of specificity in the question may have introduced errors in the estimates, we assume they are
negligible in in our aggregate model. We consider the estimates as the observed drug addiction treatment initiate counts, 𝑦𝑖 for
𝑖 = 1, 2… , 5, in our model.

The NSDUH30 also informed the annual counts for first-time illicit opioids users, 𝑤𝑖 for 𝑖 = 1, 2,… , 5. The survey asked a
set of questions that indicated whether the respondent had misused either prescription opioids or used heroin for the first time
in the past year.

Additionally, we used the NSDUH30 to identify those who indicated they had ever used prescription opioids - both in ac-
cordance with a doctor’s prescription and not, and those who had ever used heroin. We combined the information to inform
𝑠(𝑚)𝑖

/

𝑆 (𝑚)
𝑖 for 𝑚 = −1, 2 and 𝑖 = 1, 2… , 5 in the model.

5.2 Priors
The proposed method requires a set of priors for a set as part of the Bayesian analysis. We specified weakly informative priors
based on the available estimates and external information. We used a common set of priors for non-Hispanic black and non-
Hispanic white populations to avoid introducing differences in the posterior distributions unseen in the data.

We first specified the initial expected incidences, 𝑟(1)0 and 𝑟(2)0 . While there doesn’t appear to be any publicly available data
on first-time opioid prescriptions in the United States, Canadian Institute for Health Information31 reported that 9.4% of the
population in Ontario, Saskatchewan, and British Columbia in 2014. We assumed the proportion in the United States were
similar and set 𝑟(1)0 = 0.1. The NSDUH30 estimated that 0.014% of the population in the United States aged 12 or older in 2015
first started using opioids illicitly. We set 𝑟(2)0 = 0.00015. With 𝜈𝛾 , we controlled the amount of deviations in 𝛾 (1)0 = log(𝑟(1)0 ) and
𝛾 (2)0 = 𝑟(2)0 over time. We set 𝜈𝛾 = 1 which allowed flexibility with probability of the annual expected incidences increasing by a
factor of 2 or more to be approximately 0.157.

To specify the priors on the initial transition probabilities, we relied on the estimates from the NSDUH30 and the observed
opioid-induced mortality counts from the U.S. Mortality Multiple Cause Files28 for the population in the United States aged
12 or older. Based on the estimates for 2015, we set 𝑝(1)0 = 0.015, 𝑝(2)0 = 0.15, and 𝑝(3)0 = 0.0005. To control the amount of
deviations, we set 𝜈𝛿 = 1. The prior allowed the odd ratio of transition probabilities in comparison to the previous year to be
larger than 2 with a probability of approximately 0.157.

We specified the priors for the initial prevalence of the first two states in our model based on the proportions of the population
estimated from the NSDUH.30 For the first state, we specified that the logit function of the proportion followed 𝑁

(

0, 0.32
)

.
The estimated proportion from the survey in 2015 was approximately 0.5 and the prior allowed the proportion to be between
0.4 and 0.6 with a probability of approximately 0.826. Similarly, we specified the logit function of the proportion in the second
state to be 𝑁

(

−2, 12
)

. The estimated proportion from the survey was approximately 0.1. The prior assumed a higher variance
and allowed the proportion to be less than 0.3 with a probability of approximately 0.876.

Lastly, we assumed no direction in the biases introduced by the ratio estimates for the transition probabilities. We assumed
normal with mean 0 and 𝜎2 = 1 truncated at −1 and 1 for both 𝜙(1) and 𝜙(2).
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Figure 8 Observed counts for non-Hispanic black and non-Hispanic white populations in the United States. Posterior predictive
distributions based on 500 samples from the posterior samples for each group are shown to assess the model fits to the data.

5.3 Results
We fitted separate models for non-Hispanic black population and non-Hispanic white population using RStan’s25,26 imple-
mentation of No-U-Turn sampler.27 Codes used for the fitting the models and generating the plots are available at https:
//github.com/mjmoon/bmm-opioid.

Figure 8 displays the count data used for fitting the model with the distribution of posterior predictive samples in black for the
non-Hispanic black population and in gray for the non-Hispanic. To generate the posterior predictive distributions, we randomly
selected 500 samples of their means from the posterior distributions, 𝑋post

𝑖 , 𝑌 post
𝑖 , and 𝑊 post

𝑖 and generated samples, 𝑥rep𝑖 , 𝑦rep𝑖 ,
and 𝑤rep

𝑖 , based on the distributions described in Equation 10.

𝑥rep𝑖 ∼ Pois
(

𝑋post
𝑖

)

𝑦rep𝑖 ∼ Pois
(

𝑌 post
𝑖

)

𝑤rep
𝑖 ∼ Pois

(

𝑊 post
𝑖

)

for 𝑖 = 1, 2,… , 5

(10)

The distributions of 𝑥rep𝑖 and 𝑤rep
𝑖 align with the observed counts, 𝑥𝑖 and 𝑤𝑖. The distributions 𝑦rep𝑖 , on the other hand, misses the

observed counts for years between 2015 to 2017 although they track the trend over the years. By 2019, the predictive posterior
distributions align for all three counts for both races. For all counts, the overall trends of the posterior predictive distributions
align with the observed counts over time.

Figure 9 shows the posterior distributions of the incidences and the transition probabilities. The black markers represent non-
Hispanic black population and the grey markers represent non-Hispanic white population. While the 95% credible intervals
overlap, the incidence rates per 1 000 for opioid prescriptions and direct opioid misuse for non-Hispanic black population are
consistently higher than those of the non-Hispanic white population. On the other hand, the model estimates higher transition

https://github.com/mjmoon/bmm-opioid
https://github.com/mjmoon/bmm-opioid
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Figure 9 Posterior medians with 95% credible intervals of the transition probabilities and incidences for non-Hispanic black and
non-Hispanic white populations in the United States. The curves on the left margins represent the priors for the initial values
based on 50th to 90th percentile values of 𝜎𝛾 and 𝜎𝛿 . The first two transition probabilities also include the ratio estimates used to
inform the model.

probabilities from prescription use to misuse among non-Hispanic white population despite the ratio estimates from the NS-
DUH30 showing the opposite. The model’s estimates suggest that non-Hispanic black people were more likely to initiate opioids
misuse directly from using illicit opioids. On the other hand, non-Hispanic white people initiate opioids misuse at a higher rate
after taking prescription opioids.

Figure 9d suggest higher probabilities for non-Hispanic black population to initiate drug addiction treatments compared
to non-Hispanic white population. Despite the higher treatment initiation probabilities, opioid-induced mortality rates among
non-Hispanic black population increased more rapidly during the same time period as shown in Figure 8c. Figure 9e shows a
similar trend in the probability of opioid-induced deaths among those who has not received treatments for non-Hispanic black
population. The death probabilities are also estimated to be consistently higher among non-Hispanic black population.

DISCUSSION

We proposed a Bayesian back-calculation multistate framework that incorporates multiple sources of data to understand the
progression to opioid-induced deaths. The framework allows reliable estimation of time-varying transition probabilities from
opioid prescription to opioid misuse, from opioid misuse to addiction treatment, and from opioid misuse to opioid-induced
deaths. It also estimates time-varying incidences of first time opioid prescription and opioid misuse. The Bayesian approach
brings together data from multiple sources in a multistate model, and produces probabilistic estimates. Our proposed framework
can depict the progression behaviour of opioid users at different stages while quantifying the uncertainties associated with the
quantities estimated. While we were interested in the context of opioid use and related mortality, the framework would be broadly
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applicable in cases where we are interested in the progression to observed outcomes with only partial information available for
the intermediate steps.

The simulation studies presented in Section 4 demonstrate that the proposed framework is capable of retracting the unobserved
incidences and interim transition probabilities with reasonable prior choices. They also reveal the potential challenges in practice.
First, the posterior distributions of the incidences become less informative over a longer period of time with large variances as
shown in Figure 5. Even within short periods, the variances may grow unexpectedly large. The case study on the opioid crisis
in the United States exemplifies the issue as indicated by the 95% credible interval that span from less than 1 to 1 000 per
1 000 in Figure 9a. Using a different time-variant distribution model for the incidences such as higher order random walks may
help address the issue. The simulation studies also reveal the lack of identifiability for the transition probability from opioid
prescription to misuse also suffers as shown in Figure 7, which could be addressed by using informative priors.

The case study on the opioids crisis in the United States in Section 5 highlights the differences in how the crisis affected non-
Hispanic black and non-Hispanic white populations. Specifically, the estimates suggest that the non-Hispanic black population
faced higher probabilities of opioid-induced deaths conditional on using opioids in an illicit manner. The death probabilities
were higher despite seeking treatments at higher rates. The difference in the type of initiating opioids between the two races
may explain the disparity in the outcomes. Those who initiated opioids misuse with illicit opioids likely face higher risks of
using illicitly manufactured synthetic opioids such as fentanyl. The trends also coincide with the increased number of deaths
involving synthetic opioids while deaths involving prescription opioids remained stable during the same period.32 Another
possible contributing factor is the difference in quality of treatments. Non-Hispanic white opioid users likely receive higher
quality of care and treatments for opioid abuse and dependence.33 The difference in the type of initiating opioids and the disparity
in care are likely causing more deaths among non-Hispanic black opioid users. Our framework was able to depict the differences
that align with existing literature with the advantage of integrating them in a single, unified framework.

Our proposed framework depicts the aggregate behaviour at the population level. It could be extended to incorporate addi-
tional information. For example, the data sources used in Section 528,30 provide records by sex and age groups. Birrell et al.23

demonstrates incorporating age as a covariate in a Bayesian back-calculation model to study HIV prevalence and incidences. A
similar extension to our framework would allow age-specific estimates.

Another possible approach to extending the framework is extending the multistate model with more transitions and states. The
2015 update on the National Survey on Drug Use and Health24 included addition of questions around prescription opioid use.
This allowed us the model the prescription opioid users as a separate group in the multistate model shown in Figure 4. Continued
improvements in monitoring of the opioids crisis would allow access to more information allowing the multistate model to
be extended. For example, the literature suggests that a high proportion of those who receive treatments, including medicated
treatments, on opioid addiction relapse to opioid misuse.34,35,36 By incorporating additional information that, even partially,
inform the reverse transition, the framework may be extended to provide estimates on the additional transition probability and
improved estimates on the other transitions.
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