Sociology Quant Camp

Math review

Hello

- Jointly appointed statistics and sociology
- Demographer
- Australian
- Teaching IDA in Winter
- Office in stats only: 9135

Overview

- Fractions, proportions, percents
- Mathematical notation
- Transformations
- Functions and graphing
- Algebraic manipulation

Fractions, proportions, percents

Fractions

- A fraction is a part of a whole
- We express a fraction as a quotient
- The top number is the numerator

- The bottom number is the denominator

Questions
-What is $\frac{2}{4}$ equivalent to? $\frac{1}{2}$
. What is $\frac{1}{2} \times \frac{3}{4} ? \quad=\frac{3}{8} \quad \frac{1}{2} \times \frac{2}{8}=\frac{2}{16}=\frac{1}{8}$

- What is $\frac{1}{4}+\frac{3}{4}$? $=\frac{4}{4}<1$
. What is $\frac{1}{2}+\frac{3}{4}$? $\frac{1}{2} \times \frac{3}{4}=\frac{2}{4} \times \frac{3}{4}=\frac{5}{4}=1 \frac{1}{4}$

Proportions

- A part, share, or number considered in relation to the whole
- Another way of writing fractions
- Rather than expressing as a quotient, calculate the quotient
- E.g. $\frac{1}{2}=0.5$
- $\frac{2}{5}=0.4$
- $\frac{1}{3}=0.333 \ldots ; \frac{2}{3}=0.666 \ldots$

Proportions

- Note that computers represent fractions as proportions (e.g. try typing $1 / 4$ into R)
- You probably won't have to ever calculate these by hand (but maybe you will)
- Trick to calculating by hand: get the denominator to equal 10 , then the proportion is the numerator with the decimal point moved to the left
- E.g. $1 / 2 \rightarrow>1 / 2$ * $5 / 5 \rightarrow>5 / 10 \rightarrow>0.5$
- $1 / 4 \rightarrow>1 / 4^{*} 2.5 \rightarrow>2.5 / 10 \rightarrow>0.25$
. $2 / 3 \rightarrow 2 / 3 \cdot \frac{10}{3} / \frac{10}{3}->\frac{20}{3} / 10 \rightarrow 0.667$

Percents

- A number expressed as a fraction of 100
- E.g. $1 / 2 \rightarrow>50 / 100 \rightarrow>50 \%$
- $4 / 5$-> 80/100 -> 80\%
- Questions
- What is $7 / 8$ as a percent?

- What is the proportion 0.64 as a percent?

Percents

- Questions:
- What is 50% of 70 ?
- What is 30% of 70 ?

10% of 70 is 7 $3 \times 7=21$
- 40% of a number is 7 . What is the number?

$$
\frac{7}{0,4}
$$

Percent changes

- In year 1 there were 100 students. In year 2 there were 150 students. What's the percentage change in students?
- My child's class size when from 30 to 40 kids this year. What's the percentage change in kids?
- It used to take me 60mins to run 10 km . Now it takes me 50mins. What's the percentage change in time?

Mathematical notation

Mathematical notation

$2+2=4$

- Lots of symbols representing operations, numbers, relations, and other objects and formulas
- Like a language, summarizing mathematical operations
- E.g. equals =, multiply x, add + , take away -
- But there are some symbols that are important that you may not be so familiar with

Letters as symbols

- Often in mathematics and statistics, we use certain letters to represent numbers in a general sense
- E.g. pretend you are interested in counting the number of cars that pass the university/college intersection over a half an hour period
- You could collect data (observations) based on standing at the intersection and counting the number of cars in successive half hour periods
- E.g. over three hours you may see 12, 36, 50, 20, 40, 50 cars
- But even before observing the number of cars, we can talk about this concept (variable) in a general sense

Letters as symbols

- Define our variable of interest to be the number of cars that pass the university/college intersection in half an hour
- We can give this variable the symbol x
- x represents the number of cars observed in a half an hour period
- If we collect multiple observations of x, then we can add a subscript
- $x_{1}, x_{2}, x_{3}, \ldots$

Letters a symbols

- The letters x, y, z are the most common symbols used to denote numbers in a general way
- Blame Descartes (1637)

More symbols

- Imagine we have a set of 6 car observations $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$
- Now imagine we want to calculate the sum of those 6 observations
- We could write the sum as

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}
$$

- But there's an easier way!

Summation

- $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}$ is the same as caporal sigma

Sum the values of $x i$ from
i equals I to
$u \geqslant 6$

- another thing you'll see a lot is the letter n
- n : used to denote sample size
- cor example: $n=6$

$$
\begin{aligned}
\frac{\sum_{i=1}^{n} x_{i}}{n} & \begin{array}{c}
\text { sum of everything } \\
\text { even/ }
\end{array} \\
& =\bar{x}
\end{aligned}
$$

\(\left.$$
\begin{array}{c|c|c|c|c}\begin{array}{c}\text { i } \\
\text { respondent } \\
\#\end{array}
$$

income\end{array}\right)\) age | educ |
| :---: | | hours |
| :---: |
| worked |

Transformations

Transformations

- Transformations take a number and do something to it to get another number
- There are many different transformations, but let's cover to of the most important ones (in the context of regression)

1. Squaring/square roots
2. Exponentials / Logarithms

Squaring

- Multiply the number by itself
- Represented in mathematical notation as x^{2}
- E.g. $6^{2}=6 \times 6=36$
- You can calculate in R using $x^{\wedge} 2$
- Questions:
- What is 2^{2} ?
- What is $(-2)^{2}$?

- Why is squaring an important transformation?

Square roots

- The inverse, or opposite operation of squaring a number is to find a number's square root
- Represented in mathematical notation as \sqrt{x}
- e.g. the square root of 9 is $3: \sqrt{9}=3$
- Notice that the square root of a number squared is just the number i.e.

$$
\sqrt{x}^{2}=x
$$

- You can calculate in R using the function $\operatorname{sqrt}(\mathrm{x})$
$>$ sqrt(8)
[1] 2.828427

Exponentials

- The number e is a mathematical constant, equal to about 2.71828
- (Think pi, $\pi=3.1415$...)
- Another important transform is e^{x}
- E.g. $e^{1}=e$

- $e^{2}=7.389$
- Calculate in R using the $\exp ($ function
$>\exp (2)$
[1] 7.389056

Logarithms

- The inverse function of exponentiation is the logarithm
- That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x.
- For example, $10^{2}=100$. so $\log 100$ to the base 10 is 2 . Also written as $\log _{10} 100=2$.
- Importantly, natural logarithms are logs to the base e
- E.g. $\log e=1 ; \log e^{2}=2$
$\log)=0$

Logarithms

- Note! You can only take logarithms of positive numbers (why?)
- The transformation $\log x$ has the effect of "stretching out" smaller numbers and "shrinking" larger numbers
- Note! When x is less than $1, \log x<0$
- E.g. $\log 0.5=-0.69 \quad \log \frac{1}{2}=-0.69$

$$
\begin{aligned}
\log 2=+0.69 & >\log (0.5) \\
& {[1]-0.6931472 }
\end{aligned}
$$

Functions and graphing

Functions

- An expression, rule, or law that defines a relationship between one variable (the independent variable) and another variable (the dependent variable).
- For example
- $y=x^{2}$
- $y=\log x$
- $y=m x+c$

Functions

- Let's consider $y=x^{2}$
- We can map values of x to values of y

x	y
0	1
1	1
2	4
3	9

Graphing

- We can then draw the function to see what it looks like

Graphing

Graphing

- $y=m x+c$ is the equation for a straight line
- c is the intercept
- m is the slope
- E.g m = 2, c = 3 $->$

Graphing in \mathbf{R}

Algebraic manipulation

Rearranging equations

- Sometimes we may have an equation in terms of one variable, but want to rearrange in so it is expressed in terms of another variable.
- E.g. consider $y=m x+c$. What if we wanted to know what m was?
- To isolate m, need to perform the same operations to both sides of the equation until m is on its own

Rearranging equations

$$
\begin{gathered}
y=(m x+c \\
y-c=m x+c-c \\
\frac{y-c}{x}=\frac{m x}{x} \\
m=\frac{y-c}{x}
\end{gathered}
$$

Questions
stare ard ma a

- If $X=\sigma Z+\mu$, what does Z equal?
- If $y=\frac{2}{5} x^{2}-7$, what does x equal?

$$
\begin{aligned}
& y+7=\frac{2}{5} x^{2} \\
& (y+7) \frac{5}{2}=x^{2} \\
& x=\sqrt{(y+7) \frac{5}{2}}
\end{aligned}
$$

