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1 Introduction

This report summarizes a variety of modeling approaches that were explored with the aim of
estimating stateless populations in different data contexts. Most approaches are illustrated
using different case studies covering a wide range of countries. In addition, a more general
approach to estimating adjustments to census data is also discussed.

Firstly we illustrate how a probabilistic demographic projection framework can be used to
reconstruct past populations of Shona in Kenya. While this particular case study involves
reconstruction of historical populations, we discuss how this model framework could be used
in many different data availability situations, including to forward project future populations,
and incorporating multiple, and potentially incomplete data sources.

Secondly, we discuss a conceptual framework to adjust information about statelessness and
unknown citizenship reported in censuses, which could be more broadly applied to many
countries. The main idea is that if we have countries that have both census data and
reasonable quality stateless counts from another source, we can calculate a set of adjustment
ratios (by age, and potentially over time). These adjustment ratios can then be incorporated
into a statistical framework to adjust census data from other countries where good quality
data do not exist. However, after completing an extensive review of census and other data
sources, we found there was limited situations where this could be applied. In our view this
approach could be potentially applied if a more extensive search for censuses was undertaken,
or if this approach was combined with demographic projection.

We then outline the case study of estimating stateless populations in the United States. We
draw on data from the American Community Survey to estimate trends in populations at risk
of statelessness, then discuss avenues to potentially convert those at-risk to actual stateless
populations. Again this is a conceptual discussion with suggestions made for further data
to be incorporated.

The next section outlines the case study of estimating stateless populations in the Nether-
lands. This approach uses data on stateless persons and broader migrant stocks and flows to
calculate prevalence and similarity indexes for stateless populations and persons of unknown
citizenship. These indexes are then converted into probabilities to estimate the proportion of
reported persons of unknown citizenship who are likely to be stateless. The results presented
are illustrative as, in a similar vein to the US example, expert opinion and knowledge is likely
needed to reasonably encode risk-of-statelessness probabilities.

Finally we present a method to estimate persons at high risk of failing citizenship procedures
in Cote d’Ivoire. This method relies on survey data which is used to estimate individual
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risks and subsequent probabilities of procedure failure, as well as post-stratification which
re-weights the estimated probabilities to be representative at the population level.

2 Demographic projection case study: estimating the
Shona population in Kenya over time

In general, available data and estimates of stateless populations may not be complete or up-
to-date. In such cases, we may want to construct a current estimate of a population of interest
by using a past estimate and “projecting” the population forward in time by simulating births
and deaths, and incorporating information about migration where applicable.

The following sections demonstrate the use of this method on the Shona population in
Kenya. Since the Shona population was recently enumerated in a survey, we can test the
projection method to reconstruct the population in the past. In addition to setting up the
machinery to perform the estimation in other contexts, there are several goals for completing
this exercise. Estimates of the past and current population are generated under different
model conditions to understand how the population estimate behaves under different model
assumptions. Primarily, we test different ways of incorporating information in the model
that may suit different data contexts.

2.1 Data

This method requires an age-stratified estimate of the population at some point in time,
and demographic rates over the desired projection time period. We use the data from the
2019 Kenya Shona survey as a current estimate of the Shona population, and we use the
national estimates of fertility and mortality from the United Nation’s 2019 World Population
Prospects (WPP) for Kenya as the basis for the demographic rates.

The 2019 survey contains responses from 464 households, and contains information on house-
hold and individual characteristics. Importantly, demographic information was recorded, in-
cluding the dates of birth and sex of each individual in the household. This is then aggregated
to produce age-specific population counts.

National fertility and survival estimates produced as part of WPP are used. National es-
timates for Kenya span the period 1950-2019 and contain age-specific rates suitable for an
age-structured model.

4



2.2 Methods

The cohort component projection method reconstructs or forecasts age-specific population
counts by using known fertility, survival, and, if applicable, migration information. Generally
this involves starting with an initial population estimate and simulating births, deaths, and
migrations according to some assumed rates over some period of interest. For simplicity and
following common convention in similar methods, we only consider the female population
relevant for births. The male population can be added by simulating their aging and death
processes separately.

One way to perform cohort component projections is to use a Leslie matrix approach. In
this approach, age-specific population counts are held in a vector, and demographic rates
are organized into a structured matrix (called a Leslie matrix) such that multiplication with
the population vector “evolves” the population forward a fixed length of time. Iteratively
applying the Leslie matrix thereby approximates the population at discrete points in time.

For age groups a = 1, . . . , A, and periods t = 1, . . . , T let sa,t denote the survival rate of
age group a over period t, which is the proportion of individuals in age group a that survive
to the next age group a + 1. Similarly, let fa,t denote the age-specific fertility rates of
women in age group a over period t. Fertility is assumed to be positive only for age groups
[15, 20), . . . , [45, 50), which we collectively denote as Af . For other age groups a ̸∈ Af ,
fertility is assumed to be zero. The vector n⃗t = (n1,t, . . . , nA,t) denotes the population vector
at time t where na,t denotes the size of the population in age group a at the beginning
of period t. If the Leslie matrix containing rates over this period is denoted Lt, then the
population at the beginning of the next period is calculated

n⃗t+1 = Lt · n⃗t

assuming there is no migration. Following the notation of Wheldon et al. (2013), the Leslie
matrix Lt is constructed

Lt =


f̃0,t f̃5,t · · · f̃A−5,t f̃A,t

s5,t 0 · · · 0 0
... ... . . . ... ...
0 0 · · · sA,t sA+5,t


The first row describes population changes due to fertility, where each term

f̃a,t = 5 · s0,t · pF · fa,t + fa+5,t · sa+5,t

2
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expresses the number of female children per woman who survive to the next age group.
Here, pF is the proportion of female births, and the factor of 5 adjusts the single year rates
to match the 5-year projection intervals.

The off-diagonal entries contain survival rates which ages the population while accounting
for mortality.

If there is migration, then the population at the beginning of the next period is instead
calculated

n⃗t+1 = Lt ·
(

n⃗t + m⃗t

2

)
+ m⃗t

2 .

where mt denotes the net number of migrants entering the population at each age group over
the period. To improve the discrete-time approximation, this setup assumes that half of the
migration occurs at the beginning of the period and the other half occurs at the end of the
period such that half of the migrants experience fertility and mortality. In our particular
example for the Shona population however, we assume there is no migration.

The demographic rates in a Leslie matrix are usually fixed based on assumptions. Whel-
don et al. (2013) introduced a method to perform these projections probabilistically using
possibly incomplete data. In their framework, the true underlying population counts and
demographic rates are treated as unknown parameters. Intuitively, since different fertility
and mortality rates lead to different population sizes and age structures, intermittent popu-
lation observations such as censuses and surveys can inform what demographic rates likely
led to the observed population.

Estimation is performed in a Bayesian setting. Following the convention of Wheldon et
al. (2013), we use an asterisk (∗) to distinguish observed values from the true values. For
example, let na,t denote the true population counts, and let n∗

a,t denote observed population
counts where available. The population observations are modeled

n∗
a,t ∼ Normal(na,t, σ2)

The true underlying population counts are governed by the Leslie matrix process. Assuming
there is no migration, for t = 1, . . . , T the population vectors are generated as

n⃗t+1 = Lt · n⃗t,

and priors are placed on the rates contained in Lt centered at the national rates

log fa,t ∼ Normal(log f ∗
a,t, σ2

f ) for a ∈ Af logit(sa,t) ∼ Normal(logit(s∗
a,t), σ2

s).
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Population counts are in this way determined iteratively from the initial population count.
However, in this particular application we do not have a reliable estimate of the initial
population. We test several setups for the initial population.

2.2.1 Age structure: uniform counts

In the first setup, the population is assumed to have a uniform age distribution, where the
count for each age group a = 1, . . . , A is modeled

log(na,0) ∼ Normal(log(100), 0.5).

This is the most uninformative model set-up.

2.2.2 Age structure: Dirichlet parameterization

We then try a more realistic setup whereby the initial age distribution is assumed to be
similar to that of Zimbabwe in the same period. Zimbabwe was chosen as it was the origin
for the majority of the Shona population.

The population age proportions p⃗0 = (p1,0, . . . , pA,0) in this case follow a Dirichlet distribution

p⃗0 ∼ Dirichlet(d · α⃗),

where α⃗ = (α1, . . . , αA) is a simplex describing age proportions in the Zimbabwean popu-
lation, and d is a constant controlling the “concentration” of the age distribution around
proportions α⃗.

Unfortunately, this set-up was difficult to estimate.1

We therefore implement this model using the Gamma parameterization of the Dirichlet
distribution, which partially addresses the numerical issues. If α⃗′ = d · α⃗ = (α′

1, . . . , α′
A),

then an equivalent parameterization of p⃗0 is

p⃗0 = (γ1, . . . , γA)∑A
i=1 γi

,

where γi ∼ Gamma(α′
i, 1).

1Hamiltonian Monte Carlo has trouble sampling directly from this Dirichlet distribution because some of
the older age group proportions are very small, creating unreliable divergent transitions.
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The total population count is controlled separately. Let N0 = ∑A
a=1 na,0,

log(N0) ∼ Normal(7, 0.7)

and the initial age-structured population is obtained by multiplying the proportions by the
total population

n⃗0 = N0 · p⃗0.

2.2.3 Age structure: Normal log-ratio parameterization

We also tried incorporating the age structure using a Normal log-ratio model. Given A age
groups, if (α1, . . . , αA) denote the known Zimbabwean initial age proportions, then define r⃗

as the vector of log ratios of these proportions, using the middle age category as the baseline:

(r1, . . . , rA) =
(

log α1

αA/2
, . . . , log αA

αA/2

)
.

The unknown proportions of the Shona population are modeled as

p⃗0 = softmax(ρ⃗) = (exp(ρ1), . . . , exp(ρA))∑A
a=1 exp(ρa)

where each ρa is centered at the observed ratio r,

ρa ∼ Normal(ra, 1).

The total population count N0 follows a separate distribution,

log(N0) ∼ Normal(7, 0.7),

and the age-structured proportion is similarly obtained by multiplying the proportions by
the total population,

n⃗0 = N0 · p⃗0

2.2.4 Data incorporation: counts and proportions

We also explored alternative ways of incorporating the survey observation. Recall that
in the above setup, we model the age-specific counts as independently arising from their
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corresponding true latent count,

n∗
a,t ∼ Normal(na,t, σ2

n).

In some cases however, it may make sense to decouple the total population count from the
age details in the data. This may be a sensible option when the total count can be considered
reliable but the age data are either (partially or totally) unavailable or considered unreliable.

The idea and setup are similar to that of using age proportion information in the initial
population. Given some observation n⃗∗

t = (n∗
1,t, . . . , n∗

A,t), we calculate the observed total
N∗

t = ∑A
a=1 n∗

a,t and the observed proportions p⃗∗
t = n⃗∗

t /N∗
t .

We test two options for modeling the total population. In the first option, the observed
population total is modeled as

log N∗
t ∼ Normal(log Nt, σ2

N),

where Nt refers to the latent true total population count. We also test modeling on the
natural scale such that the observed population total is distributed

N∗
t ∼ Normal(Nt, σ2

N).

Next, the true latent proportions are modeled with the Normal log ratios parameterization.
Let (p1,t, . . . , pA,t) denote the true latent proportions, and (ρ1,t, . . . , ρA,t) denote the log-ratios
relative to the middle age group,

(ρ1,t, . . . , ρA,t) =
log p1,t

p∗
A/2,t

, . . . , log
p∗

A,t

p∗
A/2,t

 .

These log-ratios are centered at the observed values,

ra ∼ Normal(ρa,t, 1),

where (r1, . . . , rA) similarly denotes the observed log-ratios relative to the middle age group,

(r1, . . . , rA) =
log p∗

1
p∗

A/2
, . . . , log p∗

A

p∗
A/2

 .

This setup is tested using the Zimbabwean age structure model similarly with the Normal
log-ratio parameterization described in Section 2.2.3.
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2.3 Results

2.3.1 Age structure

2.3.1.1 Uniform As a point of comparison, we use a uniform age structure on the initial
population. This was useful as a ‘baseline’ model to see how additional information on the
age structure of the population changed estimates. We test the model first with no survey
data (i.e. informed only by weak priors), then incorporate the survey data to constrain the
population. The population reconstructions under these settings are shown in Figure 1.

Without the survey observation, the population sizes are poorly constrained and grow expo-
nentially given the survival and fertility rates, which are centered at the national WPP rates
for Kenya. Incorporating the survey observation drastically changes the estimated popula-
tion sizes and decreases the uncertainty around the estimate. The data also have an effect
on informing the original age structure.

2.3.1.2 Informed initial age structure: Dirichlet parameterization Here we will
present results from a model that uses the Zimbabwean age structure to inform initial age
population proportions. We again fit the model in the absence of the 2019 survey data and
after incorporating the survey data. The population reconstructions are shown in Figure 2.

Similar to the first case, the addition of the survey observation is important in constraining
the population sizes. The initial population size and the associated uncertainty is constrained
after incorporating the observation. However, the initial age distribution is unchanged, as
shown in Figure 3.

2.3.1.3 Informed initial age structure: log-Normal parameterization Figure 4
shows the population reconstruction using the log-Normal parameterization for the initial
age proportions. Compared to the Dirichlet model in Figure 2, the uncertainty intervals
surrounding the age curves are wider in the earlier periods, but are similarly narrow in more
recent periods.

Using the log-Normal parameterization, the shape of the initial age distribution is allowed
more flexibility. Figure 5 shows the estimated age proportions before and after incorporating
the 2019 survey observation with the Zimbabwean proportions as a reference. Despite the
large uncertainty intervals surrounding the posterior age structure, there is a noticeable
difference in the shape, with a new peak around ages 35-50. This perhaps suggests that the
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Figure 1: Kenya Shona population reconstruction using uniform initial age structure
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Figure 2: Kenya Shona population reconstruction using ZWE initial age proportions
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Figure 3: Estimated initial (1950) population age distributions using the Dirichlet model
of the Kenya Shona population. Median estimates with and without incorporating the 2019
survey observation are shown in blue and red respectively. Shaded bands represent an 80%
UI. The Zimbabwean proportions used to center the priors are shown in black.

Dirichlet model was too restrictive with respect to the age distribution, however the actual
point estimates are similar.

2.3.1.4 Comparisons: fertility and survival rates and population If the estimated
initial populations exhibit different age structure, then we would also expect other parameters
in the model to vary in order to compensate such that the final population is consistent with
the survey observation. Figures 6, 7, and 8 compare the fertility rates, survival rates, and
total populations under each model.

Fertility rates in Figure 6 are generally similar between all model variations, with the ex-
ception of some periods (e.g. 1985 and 2000) where the models with informed age structure
differ slightly from the uniform age structure after including the 2019 survey observation.

On the other hand the survival rates in Figure 7 show an unusually large increase in infant
mortality in 1955-1965 in the uniform age structure model. This might indicate that this
initial population is not consistent with the other inputs, which, loosely speaking, the model
tries to “correct for” by adjusting the survival rate.

The total populations over time are also quite different. Figure 8 shows the population esti-
mated by the uniform model is much higher than the informed age models, which emphasizes
the sensitivity of inferences to the model assumptions.
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Figure 4: Kenya Shona population reconstruction using ZWE initial age proportions and
log-Normal parameterization
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Figure 5: Estimated initial (1950) population age distributions using the log-Normal model
of the Kenya Shona population. Median estimates with and without incorporating the 2019
survey observation are shown in blue and red respectively. Shaded bands represent an 80%
UI. The Zimbabwean proportions used to center the priors are shown in black.
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Figure 6: Estimated fertility rates under different initial population assumptions
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Figure 7: Estimated survival rates under different initial population comparisons

16



0

500

1000

1500

2000

1950 1960 1970 1980 1990 2000 2010
Year

To
ta

l p
op

ul
at

io
n 

es
tim

at
e

Uniform

ZWE proportions (Dirichlet)

ZWE proportions (log−Normal)

Population estimates under different models

Figure 8: Estimated population sizes under different initial population assumptions.

It is worth noting that observations may also be incorporated as total count and age pro-
portions (instead of independent age-specific counts). This may be applicable when, for
instance, the total population count is considered reliable, but age information is not, since
the uncertainty for the population total and age proportions are controlled separately.

2.3.2 Data incorporation

Figure 9 compares three variations on the data model, each using the Zimbabwean Normal
log-ratio initialization. As expected, when the distribution is placed on the log totals, the
estimate is relatively less constrained than in the other two alternatives.

We can see the differences in more detail in Figure 10. In particular, the right panel shows
slight differences in the age structure. When the observation is incorporated as counts, the
estimate follows the observed data very closely, whereas in the total/proportions model, the
estimate is relatively smoother over the age structure and has wider uncertainty intervals.
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Figure 10: Comparison of population reconstruction using independent counts data model versus population total and propor-
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19



2.4 Summary

In this section, we illustrated a population projection approach to estimating stateless pop-
ulations using the Kenya Shona survey as an observation. We explored various ways to
initialize a population using partial information, and several ways to incorporate an observa-
tion. Given the recency of the survey, we do not project forward from the time of the survey.
However, this case study shows the implications of plausible model choices and when they
may be suitable. Among models for age proportions, we found that the Normal log-ratio
parameterization was more flexible and computationally stable. Using Hamiltonian Monte
Carlo sampling, the Dirichlet distribution in this context is difficult to resolve, even with the
Gamma parameterization. This is due to very small proportions at the older age groups.

Broadly speaking, model choices should be made according to data availability and reliability.
For example, models that decouple population totals and age structure are particularly useful
if age is unavailable or unreliable. If a total count from an observation is unreliable, then
modeling it on the log scale may be appropriate to avoid overconstraining the model.

In this case study we applied a probabilistic demographic projection framework to back-
project reliable survey data on the Shona population in Kenya. However, this framework
is potentially useful in a number of other data availability settings, and we have developed
the model set-up and code to be easily extended to other situations. For example, it would
be possible to use this framework to forward-project historical counts, to include multiple
sources of fragmentary data through time (either total counts or age-specific counts), and
incorporate migration flows or other out-flows due to changes in legality. In general, the
strength of the probabilistic projection framework is that the resulting estimates can be
informed by multiple types of information, and incorporate different levels of uncertainty.
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3 ‘Overlap’ model proposal

In this section we discuss how to potentially leverage census data to produce estimates of
stateless populations where other high quality data is not available. The central idea is
behind this approach is this: although census data on stateless populations is generally
acknowledged to be unreliable on its own, we can ground assumptions about the underrep-
resentation of stateless representation in censuses by looking at similar countries that have
comparable census data and high quality data available. By calculating adjustment factors
and assuming these hold to other, similar countries, unreliable census estimates could then
be corrected for the underpresentation to produce a more reliable estimate.

We describe this approach below, but do not yet apply the estimation process due to lack
of suitable data. The current data availability and what data are further needed for this
method are discussed in the third section.

3.1 Method

The proposed method comprises three main steps. First, an adjustment factor for a (possibly
outdated) census is estimated. The adjustment factor relates counts in a census (or stateless
persons, or persons of unknown citizenship, for example) to a high quality data source on
stateless counts. Second, the adjustment factor is applied to the surveyed population at
the time of the census to estimate the stateless population. Lastly, the census-year-estimate
of the stateless population is projected forward to present day produce an estimate of the
current stateless population.

This model requires several data inputs. For some country of interest c = c∗, we must have
some census, say, at year t∗, from which we can extract age-specific counts of respondents
self-reported stateless (or of unknown citizenship). Assuming A age groups, we denote these
counts by y⃗c∗,t∗ = (yc∗,t∗,1, . . . , yc∗,t∗,A). Note that this census is for a country of interest for
which we do not have another reliable stateless population counts.

We also require data from similar countries c = 1, . . . , C census data (comparable to that of
c∗) is available in a year where reliable stateless data is also available. For country c, denote
the most recent year where this overlap occurs as tc, and denote the age-specific census counts
y⃗c,tc = (yc,tc,1, . . . , yc,tc,A) and denote the reliable stateless data as z⃗c,tc = (zc,tc,1, . . . , zc,tc,A).
This model may be able to be adapted to situations where some data is unavailable (e.g. the
reliable data is not age-stratified), and we discuss possible modifications below.
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Age-specific fertility and survival rates are required for population projection and denoted
fc,t,a and sc,t,a respectively.

Finally, we require data or estimates of flows in and out of the stateless population of country
c∗. Namely, if individuals are granted legal status, migrate elsewhere, or additional stateless
individuals enter the population, then these should be incorporated in the projection step.
If these quantities are negligible, or the census was taken very close to present day, then
assuming them to be zero in the absence of data may not have a large impact on the
resulting estimate.

3.1.1 Estimating the adjustment factor

Let ϕ denote the ratio of the number of individuals represented in the census data (y)
to the number of individuals represented in the reliable data (z). For reference countries
c = 1, . . . , C, assuming that the age-specific data are available, we can calculate the ratios
for each country-observation-age group, ϕc,t,a = yc,t,a/zc,t,a.

In the simplest case, census data for all countries and the available high quality data all
occur in the same year t, and we can model the distribution of ϕ as

log ϕc,t,a ∼ N(log ϕ̄a, σ2
ϕ),

where ϕ̄a represents the mean ratio for age group a, and σϕ captures the inter-country
variability in ϕ. Note that this assumes that there are a set of countries similar enough in
terms of likely census undercount that the mean adjustment factor is a reasonable estimate
for countries without good quality stateless data.

The age-specific ratios ϕ̄a are assumed to have a smooth structure over age, which is enforced
by expressing ϕ̄ using B-splines

ϕa =
K∑

k=1
βkBk(a),

where {Bk}K
k=1 represents a B-spline basis over the interval [1, A], and βk are coefficients to

be estimated, assigned weakly informative priors

βk ∼ N(0, 1002).

In principle the above setup can still hold as long as there is no systematic change in the
censuses over time. In other words, if we believe that that the countries’ censuses in question
are reasonably comparable despite having occurred in different years in different countries,
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then we do not require that all censuses happen at some time t. However, at this point we
do still require that the census and reliable data for a given country are taken at the same
time.

We may instead want to allow for the possibility that there is systematic change in the
average quality of census data over time. In that case, the observations could inform a
year-specific ϕ̄a,t, such that for each observed ϕc,t,a,

log ϕc,t,a ∼ N(log ϕ̄t,a, σ2
ϕ),

with similar smoothing over age,

ϕa =
K∑

k=1
βk,tBk(a),

and a random walk imposed on the spline coefficients to control the temporal variation

βk,t ∼ N(βk,t−1, σ2
β).

Modeling ratios over age would require much more data to obtain reasonable estimates.

3.1.2 Applying the adjustment factor

Once estimated from the previous section, the adjustment factor can then be applied to
correct the census estimate of country c∗. Assuming that the census in countries c = 1, . . . , C

is representative of the situation in c∗, we can estimate the true number of stateless ẑ,

individuals in age group a at census time t∗ as

ẑc∗,t∗,a = (ϕ̂c∗,t∗,a)−1 · yc∗,t∗,a,

where ϕ̂c∗,t∗,a comes from the predictive distribution,

log ϕ̂c∗,t∗,a
RNG∼ N(log ϕt∗,a, σ2

ϕ).

3.1.3 Projecting to current time period

After obtaining the adjusted estimate at the time of the census ẑc∗,t∗,a, we can project the
population forward in time using the Leslie matrix approach described in the demographic
projection section, and we give only a brief summary here. In short, the relevant fertility and
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survival rates for some time t are structured in a Leslie matrix Lc,t such that, when multiplied
by an age-specific population vector z⃗c,t, the resulting vector reflects the population after a
fixed interval of time, accounting for the births and deaths in that period. The population
zc,t+1 at the next time step is calculated

z⃗c,t+1 = Lt · z⃗c,t.

In cases where citizenship is granted jus soli, the “fertility” terms in Lt can be set to zero to
reflect the fact that individuals born in that country are not stateless.

Depending on the context, we may also incorporate inflows and outflows of this population,
for instance if individuals are known to have been granted legal status. We denote the net
inflow as m⃗c,t. To approximate flows happening throughout the interval, we assume that
half of the flow occurs at the beginning of the interval (thus experiencing births and deaths)
and half at the end, such that the population after accounting for migration is

z⃗c,t+1 = Lt ·
(

z⃗c,t + m⃗c,t

2

)
+ m⃗c,t

2 .

For simplicity of notation, we denote this projection operation pt(·) such that

zt+1 = pt(zt).

Iteratively applying this process allows us to project the population forward in time as
necessary to obtain a present-day estimate.

One challenge of this approach, is the assumption of demographic rates and the uncertainty
surrounding them. We may, for instance, set the rates at the WPP estimates which are
readily available. However, prior predictive checks may be needed to calibrate the uncertainty
to reflect a reasonable range of rates.

3.1.4 Adaptations for partial data

There are possible adaptations that can be made if full, detailed data are unavailable. The
approaches described below require additional assumptions, and so in general it is always
better to have more detailed data.

3.1.4.1 Age breakdown unavailable If the reliable data for some country c1 has a
count Nc1,t, but are not disaggregated by age, possible options are to use the age structure
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from other high quality data. This assumes that the age-structured data approximates the
true age structure of the stateless population, which may make this particularly applicable
when the stateless population largely comes from one place of origin, and there are detailed
data about the origin population.

The approach is similar to that of using the Zimbabwean population proportions to initialize
the Kenya Shona population projection. Let (pc,1, . . . , pc,A) denote the age proportions of
the population in country c. Choosing some age group a′ to act as a reference category, we
calculate log-ratios of model proportions and denote these using ρ:

ρc = (ρc,1, . . . , ρc,A) =
(

log pc,1

pc,a′
, . . . , log pc,A

pc,a′

)
.

We can then model the log ratios as

ρc,a ∼ N(ρ̄a, σ2
ρ)

and the age structure for country c1 can be estimated

ρ̂c1,t,a
RNG∼ N(ρ̄t,a, σ2

ρ)(p̂c1,t,1, . . . , p̂c1,t,A) = (exp(ρ̂c1,t,1), . . . , exp(ρ̂c1,t,A))∑A
i=1 exp(ρ̂c1,t,i)

Age specific counts can then be estimated

ẑc1,t,a = p̂c1,t,a · Nc1,t,

and can then be used in the estimation process described above.

3.1.4.2 Census and reliable data exist but are not in the same year In the case
that some country c has census data y⃗t1 available at year t1 and reliable data z⃗t2 available at
year t2, we may apply a projection step before we calculate the adjustment factor. In either
case, the adjustment is performed on the (forward or backward) projected population.

If the reliable data was recorded first (t2 < t1) then we first project forward in time. Recall-
ing that pt denotes the projection operation accounting for population flows, the stateless
population at census time t1 is

z⃗t1 = pt1−1(pt2−2(· · · pt2(z⃗t2))).
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We can then calculate the adjustment factors ϕt1,a at the time of the census

ϕt1,a = yt1,a

zt1,a

.

On the other hand, if the census data was recorded first (t1 < t2), we model ϕ similarly at
the time of the census. However, the projection is done starting at time t1 using the adjusted
census count y⃗t1/ϕ⃗t1 , and we iteratively apply the population projection until time t2

pt2−1

(
pt2−2

(
· · · pt1

(
y⃗t1

ϕ⃗t1

)))
= z⃗t2 .

3.2 Data availability

As mentioned above in Section 3.1, this method requires:

1. for the country of interest (where no good quality data exist), census data which is to
be adjusted,

2. for a selection of "similar" countries, comparable census data and a reliable observation,

3. age-specific fertility and survival rates for each country,

4. "external" flows in and out of the stateless population (not due to birth or death) for
each country, from the time of the earliest observation used for that country

Thus far, for various reasons, we do not feel confident applying this approach to any countries.
To our knowledge, there are few countries that have data considered reliable or plausibly
reliable, and even fewer among them which have census data readily available on IPUMS.
We discuss select cases below.

In Europe, Ireland is the only country reporting census data on IPUMS and with plausibly
reliable data on stateless persons in the same year. The 2011 census in Ireland allows
for respondents to self-declare unknown citizenship and no nationality, and both responses
are available on IPUMS. For the 2016 census, only the unknown citizenship response is
available on IPUMS. UNHCR data for Ireland are consistently available starting from 2015.
Other European country-years where the adjustment may be applied (i.e. those with census
data available with IPUMS with unknown/stateless responses, and no reliable estimate)
include Austria 2011, Belarus 2009, Greece 2011, Italy 2001, Poland 2011, and Portugal

26



2011, Romania 2011, and Slovenia 2002. However, since the available census are at least 10
years old, we would not be able to account for external flows over this period.

A high quality estimate of stateless persons exist in Thailand, and the 2000 census reports
respondents with unknown citizenship. However, previous data is likely not of similar quality,
and we do not have data available regarding external flows. The situation is similar in
Malaysia which also had a 2000 census. Results from these two countries could inform
others in the region with available census data, such as Indonesia 2010 and Laos 2005.

Kyrgyzstan’s 2009 census allowed for stateless responses, and the most recent observation
is considered reliable. If UNHCR figures from this time are also reliable, then the method
could be applied here. However, population projection from the more recent UNHCR figure
is not an option here without data on how many persons gained legal status in the time since
the census.

It is worth noting that some censuses are not available on IPUMS and were therefore not
part of our search. In particular, if more recent censuses are available, then the problem of
missing data on flows is not as severe.

For a full graphical summary of data availability and overlap, please see the data_availability_explore
document in the GitHub repo.

3.3 Summary

In this section we discussion a conceptual framework for estimating stateless populations
based on census information, as well as adjustment factors calculated based on other, similar,
countries. In an ideal situation for this model approach, we would have many recent censuses
available with stateless information (or other data on unknown citizenship, for example) for
countries where we also have reasonable stateless counts from other data sources. This would
allow us to calculate a number of different adjustment factors that could then be applied
to other countries. However, based on our data exploration (relying solely on censuses
on IPUMS), there are very limited situations where there is an overlap of information,
particularly in recent time periods. While, it is possible that censuses may be available from
other sources that may be updated more quickly than IPUMS, in general for this method to
be used, it may need to be combined with demographic projection techniques (as discussed
for the Shona population) in order to project historical adjustment factors forward.
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4 At-risk populations case study: estimation in the
United States

This section discusses the case study of estimating stateless populations in the United States.
We use data from the American Community Survey to extract information about the size of
immigrant populations that are potentially at risk of statelessness. We then describe trends
and patterns in these data and illustrate how population size can be estimated and projected
over time with uncertainty.

As discussed in more detail below, one of the main drawbacks of this approach is that
estimates are of those populations potentially at risk of statelessness, rather than to be known
to be stateless. We thus also illustrate a modeling strategy that incorporates the probability
of an individual with certain characteristics is stateless. This approach is illustrated in
adjusting the Nepal immigrant population by their year of arrival.

4.1 Data

We used data from the 1-year American Community Surveys (ACS) over the period 2005–
2019. The ACS is a nationally representative survey that covers roughly 1 percent of the
US population. Each year, it gathers detailed data for all states and for cities, counties,
metropolitan statistical areas, and Public Use Microdata Areas (PUMAs), a US Census–
defined geographic area of 100,000 people or more.

Data were extracted from the US Census Bureau’s API using the R statistical language and
the censusapi package. We only considered sample respondents who foreign-born and were
not US Citizens. We extracted variables on age, sex, place of birth, nativity, ancestry, year
of entry, household language, nativity of parents, and state of residence.

4.1.1 Populations at risk of statelessness

To identify these groups of populations that are potentially stateless or potentially at risk of
statelessness in the United States, we largely followed the approach of Kerwin et al. (2020).
In their paper, Kerwin et al. developed at-risk profiles based on reviewing UNHCR ‘Mapping
Statelessness’ reports, and other consultations and interviews.

The following is a list of all profiles considered. For more information on how these groups
can specifically be identified using the variables available, see the at_risk R script. Note
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that based on the information available not all groups could be identified in the ACS, and
these are flagged below.

4.1.1.1 Europe and Eurasia

• Emigrants from the Former Soviet Union before Its Collapse Who Arrived in the US
before 1992

• Ethnic Russians, Belarussians, and Poles from Latvia
• Members of Ethnic Minority Groups from Lithuania
• Armenians from Azerbaijan
• Azerbaijanis from Georgia
• Meskhetian Turks
• Roma, Ashkali, and Balkan Egyptians
• Individuals with Yugoslavian Passports Who Entered the US before 1992
• Born in North Macedonia, Other Ex-Yugoslav Descent
• Born in Croatia, Serbian Descent
• Roma Born in Italy and Germany

4.1.1.2 Middle East and North Africa

• Syrian Refugee Children Born Abroad
• Feyli Kurds from Iraq. Cannot be identified from non-Feyli Kurds
• Syrian Kurds
• Lebanese Kurds and Bedouin. Cannot be identified
• Tebu Libyans. Cannot be identified
• Palestinians
• Bidoon

4.1.1.3 Asia and South Pacific

• Nepalese Born after 1990
• Ethnic Nepalis (Lhotshampas) Born in Bhutan
• Rohingya. Cannot be identified
• Other Minorities from Myanmar
• Hmong from Laos
• Hmong from Thailand
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• Members of Thai Hill Tribes
• Thai-Born Children of Burmese Refugees
• Chinese without Hukou Registration
• Tibetans
• Afghan Jogi. Cannot be identified
• Stateless Groups from India. Cannot be identified
• Bengalis from Pakistan
• Ethnic Minorities from Malaysia
• Ethnic Vietnamese and Khmer Krom from Cambodia
• Chinese Cambodians from Vietnam. Cannot be identified
• Stateless Persons from Brunei. Cannot be identified

4.1.1.4 Sub-Saharan Africa

• Ivoirians with Ancestry in Mali, Guinea, and Burkina Faso. Cannot be identified
• Stateless Groups from Kenya. Shona can only be identified after 2016
• Karana of Madagascar. Cannot be identified
• Bakassi of Nigeria and Cameroon. Cannot be identified
• Zimbabweans with Origins in Neighboring Countries. Cannot be identified
• Returned Mozambican Refugees in Mozambique. Cannot be identified
• Black Mauritanians. Cannot be identified
• Sahrawi (Born in the Western Sahara or Algeria). Cannot be identified
• Ethiopians with Eritrean Ancestry
• Eritreans with Ethiopian Ancestry
• Sudanese-Born Individuals of Dinka and Nuer (South Sudanese) Descent, Arrived in

2011 or Later. Cannot be identified
• Born in South Sudan, Main South Sudanese Ethnic Groups, Arrived in 2011 or Later.

Cannot be identified
• Banyarwanda and Banyamulenge from the Democratic Republic of Congo

4.1.1.5 Americas

• Dominicans (Dominican Republic) of Haitian Ancestry
• Bahamians of Haitian Ancestry
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4.2 Description of data

We now illustrate main patterns in the data extracted by profile group, age, sex, and region.
Estimates are calculated based on person-weights and standard errors around the estimates
are calculated based on replicate weights provided in the ACS data. Note that estimates of
particular groups are often based on very small samples in the ACS and so standard errors
are large.

4.2.1 Totals by group

Based on the 2019 ACS, there were an estimated 111621 (CI: 99327, 123915) persons iden-
tified in the at-risk profiles listed above.

The graph below shows the estimated number of persons in each statelessness risk profile in
2019. By far, the largest identified group are those born in Nepal after 1990, who constitute
almost 50% of the total number of persons identified.
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Looking at the trends over time in the five largest groups, the population of those from the
Former Soviet Union has unsurprisingly decreased over time. In contrast, the population
of those from Nepal born after 1990 has steadily increased. Note the uncertainty in the
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estimates from the raw ACS data is quite large, even for these five largest groups. For
example, the uncertainty in the 2019 number of Palestinians spans almost 3,000 people.
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4.2.2 Totals by age/sex

Looking at the trends in the age/sex distributions of the total group at risk to statelessness,
the figure below shows that the age distribution peaks at ages 20-25, and this peak becomes
more pronounced over time. In 2019, 19249 (CI: 14600, 23898) persons aged 25-29 were at
risk of statelessness. In general, there are more men than women at risk of statelessness.
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Looking at age distributions by region, we can see that the large peaks in 20-30 age groups
in 2019 are a consequence of those from the Asia and South Pacific region, and in particular
from Nepal. The age distribution in Europe and Eurasia, which is driven by immigrants
from the Former Soviet Union, is relatively older and aging over time.
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4.2.3 Restricting Nepalese based on nativity of parents

The estimate of the total population of those potentially at risk to statelessness from the ACS
is dominated by those born in Nepal after 1990, which was estimated to be around 47028
people in 2019. However, it seems unlikely that this entire population is indeed stateless. In
a 1990 revision of its constitution, Nepal restricted automatic citizenship to those descended
from a Nepalese father. Citizenship rules changed again in 2006, and citizenship on the basis
of birth became possible if individuals applied within 2 years. Finally, in 2011, Nepal passed
further reforms that allow children to acquire citizenship through mothers if their father is
unknown or absent. In practice it may be difficult, particularly for single women, to register
their children as citizens.

The ACS provides additional information which may help to further refine this profile to
better reflect those who are actually stateless. In particular, for those respondents who still
live with their parents, it seems likely that those at most at risk of stateless are respondents
who do not live with a father, and their mother is not native born. As shown in the figure
below, the restriction decreases the number of people in this group by around 8000 in 2019.
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4.3 Time series model

As seen above, the observations of populations by profile group are quite noisy over time.
To aid in estimation within the period of observation, as well as forward projection to future
time points, we modeled each profile group with a Bayesian time series model.

4.3.1 Model

Let yg,t be the number of persons in profile group g in year t. We model these on the log
scale as

log yg,t ∼ N(µg,t, s2
g,t)

where µg,t is the expected number of persons in profile group g in year t and s2
g,t is the

corresponding sampling variance calculated based on the ACS. We then model the expected
numbers µg,t as a second-order random walk:

µg,t ∼ N(2µg,t−1 − µg,t−2, σ2
g)

This model penalizes the second-order differences in the trajectory of the expected numbers
over time. This is equivalent to penalizing fluctuations away from a linear trend. There is a
separate variance term σ2

g for each profile group, allowing for different variability over time
for each group. However, these variance terms are modeled hierarchically such that

log σg ∼ N(ϕ, τ)

In this way, information about the variability in each time series is shared across groups, and
so those groups with missing observations (and thus less information) are partially informed
by other groups.

4.3.2 Results

The figure below shows the estimated and projected total population identified to be at
risk of statelessness. If recent declines continue, it is estimated to be approximately 86000
persons at risk of statelessness in 2021.
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Looking at specific groups, the figure below illustrates estimates and projections for six
different profiles of varying sizes and trends. Note that the smaller population groups, for
example Syrian Kurds, have much larger uncertainty around estimates compared to the large
population groups, such as those from the Former Soviet Union.
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4.4 Adjusting probabilities of statelessness

It is impossible to know the number of stateless persons from just the information provided in
the ACS alone; the best we can do is get an estimate of the population at risk of statelessness.
However, if we had additional information on the likelihood of statelessness based on various
individual characteristics then we could incorporate this information into the above model.

In this section we illustrate this idea with an application to the Nepal profile group. There are
many potential characteristics that could be associated with the likelihood of being stateless;
for example education, English language ability, marital status, etc. Here we assume that the
number of years resided in the US is inversely related to the probability of being stateless. In
the absence of any other information, we assume that there is a 50% chance of being stateless
in the year of arrival, and that the probability decreases for ever year in the US, down to
a minimum of 5%.2 The graph below shows the distribution of these implied probabilities
based on all ACS observations in the sample.
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This varying probability of statelessness can be incorporated into the time series model
stochastically, taking into account the uncertainty in the probability assignment. In

2This is a completely arbitrary function in the absence of any other information; ideally this could be
informed by other data sources or expert knowledge.
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particular, let zi be the probability that individual i is stateless. This is modeled as a
Bernoulli distribution,

zi ∼ Bernoulli(pi)

where pi is the probability of statelessness, and is equal to

pi = max(0.05, 0.5 − 0.01xi)

where xi is the number of years that individual i has been in the US. The sum of stateless
people in a particular year t is then equal to

yt =
∑
i∈t

zi

And yt can then be modeled as a time series as shown in the previous section.

The results of this model are shown below. For comparison, the raw ACS data are plotted
as the black dots. This illustrates that estimates and projections are substantially lower in
the more recent years.
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4.5 Summary and limitations

The American Community Survey provides a good quality data source on the number of
people at risk of statelessness in the United States, based on pre-defined profiles. However,
there are several limitations to using these data. Firstly, there is no way of knowing whether
those at risk of statelessness are stateless, just using the ACS data alone. Ideally, we would
have another data source that captures stateless persons more directly, in which we could
compare to the ACS to calibrate the results. In lieu of this, as shown above, it is possible to
model the probability of persons with different characteristics being stateless, accounting for
the uncertainty in a fully stochastic framework. However, for this strategy to be the most
effective, we would also need additional data sources and the likelihood of at-risk groups
being stateless or becoming citizens.

The second major limitation is that the ACS does not capture all known profiles of those
persons who are at risk of statelessness. For instance, there is no way of identifying Rohingya,
or at-risk stateless groups that are specific ethnic minorities within some countries. In the
Kerwin et al (2020) paper, they supplement the ACS data with data from WRAPS, which
captured some of the groups that were known to be missing in the ACS. Unfortunately, the
data they presented in that paper are no longer available at that level of granularity due to
changes in the legislation during the Trump administration.

Notwithstanding, the ACS and other similar high-quality surveys in other countries (such as
HILDA in Australia) show potential to help try and estimate those at risk of statelessness.
However, for these estimates to be more accurately capturing the true number of stateless
people, we would need additional data sources, most likely administrative, to calibrate and
adjust the larger population.
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5 Unknown citizenship case study: estimation in the
Netherlands

This section describes a method to estimate stateless population sizes when there exist data
on both confirmed stateless populations and also persons of unknown citizenship. The case
study country is the Netherlands, where data were readily available. However, the method
could potentially be used in other contexts. The method draws on patterns of stateless
persons, persons of unknown citizenship, and the broader migrant population, to estimate
the likelihood that persons of unknown citizenship are stateless (in addition to those already
confirmed to be stateless).

5.1 Data

We used data on stateless persons and persons of unknown origin, as well as data and
estimates on the broader migrant population in the Netherlands. Details are as follows:

• The number of stateless persons by age and origin country for 2019 and 2020 were
provided by the Institute on Statelessness and Inclusion.

• The number of persons with unknown citizenship by age and origin country for 2019
and 2020 were provided by the Institute on Statelessness and Inclusion.

• The number of persons currently living in the country of interest by ori-
gin country in 2020 were downloaded from UN DESA using this link: https:
//www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/
undesa_pd_2020_ims_stock_by_sex_destination_and_origin.xlsx.

• The number of in-migrants to the country of interest by age and origin country for
2020 were download from Eurostat using this link: https://ec.europa.eu/eurostat/
databrowser/view/migr_imm5prv/default/table?lang=en.

5.2 Method

5.3 Background and rationale of method

The goal of the method is to estimate the number of persons with unknown citizenship from
a particular origin country that are likely to be stateless. These numbers are then added to
the number of stateless persons from that origin country to give an updated estimate of the
number of stateless persons.
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The method draws on patterns of stateless persons, persons of unknown citizenship, and the
broader migrant population, to estimate the likelihood that persons of unknown citizenship
are stateless. The rationale is that, firstly, if the patterns by age of persons of unknown
citizenship is more similar to the patterns by age of stateless persons, compared to the
broader migrant population, then there is an increased likelihood that they are stateless.
Secondly, the overall sizes of the unknown, stateless and broader migrant population from
the same origin country to get an indication of the prevalence — the larger the size of the
stateless population compared to the total migrant population, the more likely those with
unknown citizenship are likely to be stateless.

In summary, the approach is as follows:

1. We use information about the shape of the age distributions of various migrant groups
to calculate a ‘similarity’ index

2. We also use information about underlying migrant stocks to calculate a ‘prevalence’
index

3. We then combine these two indexes and convert to a probability of being stateless

There are two possible groups of countries:

A) those that have data on both stateless persons and persons of unknown citizenship
B) those that have data on persons of unknown citizenship only

The method can be applied to contexts where there exist only countries in group A). However,
there needs to be at least some countries in this group, that is, we need some countries that
have information on both confirmed stateless counts and also counts of persons of unknown
citizenship.

5.4 Similarity index

The logic of the first step is that the age distribution of unknown persons is more similar to
stateless persons than the general migrant populations, then one could argue they are more
likely to be stateless.

We can summarize this idea of ‘similarity’ by calculating the root mean squared error
(RMSE) of the unknowns compared to stateless and unknowns compared to migrants:

RMSE =

√√√√ G∑
i=1

(pU
i − pg

i )2

G
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where i refers to age group (there are G in total); pU
i refers to the proportion of unknown

persons who are in a particular age group i, pg
i refers to the same proportion in either the

stateless group or migrant group.

Steps to calculate the similarity index are as follows:

1. For countries with both stateless and persons of unknown citizenship (group A), cal-
culate the RMSE for stateless compared to unknowns and migrants compared to un-
knowns, and calculate the ratio of the two RMSEs

2. For countries with observations of persons of unknown citizenship only (group B),
calculate the RMSE for migrants compared to unknowns, then calculate the ratio of
this RMSE to the maximum RMSE from the countries in step 1.

5.5 Prevalence index

The logic of the second step is that the larger the proportion of known stateless persons of
total migrants from that country, the more likely the persons of unknown citizenship are to
be stateless.

For countries in Group A we calculate a prevalence index as the number of stateless persons
from a particular country of origin divided by the total number of migrants from the same
origin living in the country of interest.

For countries in Group B, we cannot calculate prevalence as there is no information on
stateless populations.

5.6 Conversion to probability of being stateless

The final step is to convert the indexes into a probability of being stateless.

1. For countries in group A) we consider the product of the two indices. This product is
converted to a probability by adding a fraction between 0 and 1 based on likely values
from expert opinion.

2. For countries in group B), a likelihood index is calculated by considering the RMSE of
unknowns versus the migrant population, divided through by the maximum equivalent
RMSE in the group A countries. This is converted to a probability by multiplying by
a fraction between 0 and 1 based on likely values from expert opinion.
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Table 1: RMSE for unknown age distribution compared to stateless and migrants for coun-
tries with complete observations, 2020

country stateless migrants ratio
Saudi Arabia 0.0809651 0.0606322 0.7488690
Israel 0.0680249 0.0578980 0.8511291
Syrian Arab Republic 0.0355195 0.0315014 0.8868774
Libya 0.1149196 0.1727553 1.5032711
Iraq 0.0666945 0.1137189 1.7050724
Lebanon 0.0446298 0.0819731 1.8367365

For more detailed information on how to execute this method in R, please see the rele-
vant documentation in the GitHub repo: https://github.com/MJAlexander/stateless-pop-
project/tree/main/reports/documentation

5.7 Illustrative results

A similar process is carried out for the year 2019:

We then combine the two years into the one data frame, and translate the country names
from Dutch.

We firstly calculate the RMSEs for stateless compared to unknowns, and migrants compared
to unknowns, and the ratio of the two RMSEs. The results are shown in Table 1. Countries
with a higher ratio have a greater similarity between unknowns and stateless populations.

For many countries we don’t observe any stateless counts. We can still calculate the RMSE
between unknowns and migrant populations. The magnitude of these RMSEs can be com-
pared against those countries where we do have complete information to get an idea of the
relative similarity.

We can then take the indexes calculated above and convert them into probabilities of persons
with unknown citizenship being stateless. For countries in group A, we first multiply the
similarity index and prevalence index together, to produce an overall likelihood index. This
is then converted to a probability by adding 0.4. Ideally, this constant would be determined
basic on expert opinion about the likely range of values.

For the group B countries, we create a likelihood index by considering the RMSE of unknowns
versus the migrant population, divided through by the maximum equivalent RMSE in the
group A countries. This is converted to a probability by multiplying by 0.15. Again, ideally,
this constant would be determined basic on expert opinion about the likely range of values.
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Table 2: RMSE for unknown age distribution compared to migrants for countries with no
stateless observations

country migrants
Ethiopia 0.2375831
Togo 0.2187182
Liberia 0.1862965
Sudan 0.1843691
China* 0.1809260
Guinea 0.1786588
Sierra Leone 0.1713322
Burundi 0.1668281
Mongolia 0.1583439
Sri Lanka 0.1337818
Democratic Republic of the Congo 0.1286550
Angola 0.1269378
Côte d’Ivoire 0.1192712
Pakistan 0.1179023
Congo 0.1159192
Myanmar 0.1151933
Eritrea 0.1138321
Uganda 0.1059840
Somalia 0.1034728
Turkey 0.0936685
Afghanistan 0.0903883
Nigeria 0.0813377
Iran (Islamic Republic of) 0.0801461
Germany 0.0712691

Table 3: Statelessness likelihood index and converted probabilities

country similarity prevalence index probability
Libya 1.5032711 0.0767167 0.1153261 0.5153261
Lebanon 1.8367365 0.0330938 0.0607847 0.4607847
Syrian Arab Republic 0.8868774 0.0583080 0.0517120 0.4517120
Israel 0.8511291 0.0349282 0.0297284 0.4297284
Saudi Arabia 0.7488690 0.0344311 0.0257844 0.4257844
Iraq 1.7050724 0.0014809 0.0025250 0.4025250
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Table 4: Statelessness likelihood index and converted probabilities for countries with no
observed stateless populations

country similarity probability
Ethiopia 1.3752577 0.1500000
Togo 1.2660577 0.1380895
Liberia 1.0783839 0.1176198
Sudan 1.0672271 0.1164030
China* 1.0472961 0.1142291
Guinea 1.0341725 0.1127977
Sierra Leone 0.9917625 0.1081720
Burundi 0.9656904 0.1053283
Mongolia 0.9165792 0.0999717
Sri Lanka 0.7744006 0.0844642
Democratic Republic of the Congo 0.7447236 0.0812274
Angola 0.7347838 0.0801432
Côte d’Ivoire 0.6904056 0.0753029
Pakistan 0.6824813 0.0744385
Congo 0.6710022 0.0731865
Myanmar 0.6668005 0.0727282
Eritrea 0.6589212 0.0718688
Uganda 0.6134918 0.0669138
Somalia 0.5989560 0.0653284
Turkey 0.5422035 0.0591384
Afghanistan 0.5232158 0.0570674
Nigeria 0.4708261 0.0513532
Iran (Islamic Republic of) 0.4639284 0.0506009
Germany 0.4125437 0.0449963
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The estimated probabilities for countries in groups A and B are then combined. The ad-
ditional estimated stateless persons are then added on to the observed values to come up
with final estimates. These are used to calculate the estimated number of persons of un-
known citizenship. Standard errors are calculated based on assuming a binomial distribution.
Observed and updated estimates are plotted below.
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5.8 Summary and limitations

This method illustrates the potential for using information about the basic demographic
characteristics of stateless persons and migrant groups in the broader population to estimate
the additional number of persons with unknown citizenship who are stateless. The method
is relatively similar and only requires data that is readily available for a number of countries.
However, much like the case study in the United States, the plausibility of the resulting
estimates rests on the ability to assign reasonable probability values of statelessness for
people from different origin groups. This information would be best sourced from further
consultation with domain-specific experts.
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6 High risk of failing a citizenship procedure: estima-
tion in Cote d’Ivoire

This section describes a method of estimating people who are at high risk of failing the pro-
cedure to obtain citizenship based on available survey data. The case study is Cote d’Ivoire,
where high-quality survey data are available. In the Cote d’Ivoire report on statelessness,
individuals are classified into four risk categories (no risk, low risk, high risk, and very high
risk) based on their responses to the survey. Individuals are only placed in the high risk
category if they have underwent the procedure to obtain citizenship and failed.

The method described in this document produces an estimate of the size of the population
who are at very high risk of statelessness by modeling the probability of success in the
citizenship-obtaining procedure. The probability of success is informed by the characteristics
of individuals who have undergone the procedure.

6.1 Data

We use data from a 2019 study in Cote d’Ivoire, which collected information about individ-
ual’s risk of statelessness, in addition to other individual characteristics. As an outcome, we
are primarily interested in whether or not an individual successfully applied for citizenship.
In the survey, respondents are asked separately

Q1. whether they have began a procedure to obtain a nationality (and the outcome, if
applicable) Q2. whether they have applied for Ivorian citizenship via declaration between
Jan. 2014 to Jan. 2016 (and the outcome, if applicable) Q3. whether they have applied for
naturalization (and the outcome, if applicable)

Respondents who answer “yes” to Q2 and Q3 are a subset of the respondents who answer
“yes” to Q1. However, even if a successful outcome is reported for Q2 and Q3, they may
still report an unsuccessful outcome for Q1. In order to reduce these responses into a single
binary outcome, we make the following simplifications:

• Respondents are included in the data if they respond “Yes” to Q1 AND they have
completed the procedure (the procedure is not recorded as “in progress”) or they have
a successful outcome in Q2 or Q3

• If a respondent reports a successful outcome for any of the three questions, their
outcome is labeled as a success

47



• Otherwise, a respondent’s outcome is labeled as a failure. This includes individuals
who answer “No” to Q2 and Q3.

Note that ideally, we would also have access to census data (or some other representative
data source) on population counts by birth country and region of residence to use in the
post-stratification step. However, as we did not have access to such data, we post-stratified
based on population-weighted counts from the survey.

6.2 Method

There are two main components to the model. In the first component, we model the risk
levels of the individuals, and in the second component we model the probability of success.

6.2.1 High-level overview

The broad steps of the method can be summarized as follows:

1. An individual’s risk level of statelessness (none, low, high) is modeled as a function of
their birthplace and region

2. An individual’s probability of failing the citizenship procedure is modeled as a function
of their risk level, birthplace and region

3. These probabilities are combined to give an overall risk of failure probability
4. The risk of failure probability is post-stratified using population counts by birthplace

and region to obtain estimates of the count of persons at high risk of statelessness

Note that each individual in the survey has a risk level assigned to them. However, we
model this in step 1 in order to obtain estimates for individuals from country of birth/region
combinations who were not included in the survey.

6.2.2 Model for risk level

We model the risk level as a function of the geographic area and birthplace using a
multinomial-logit setup. Let Nr denote the number of area-birthplace combinations. Then
for some area-birthplace n = 1, . . . , Nr, letr⃗n = (rn,1, rn,2, rn,3) be a vector containing the
numbers of surveyed individuals classified as no risk, low risk, and high risk respectively.
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r⃗n ∼ Multinomial(ρ⃗n)ρ⃗n = softmax(ν⃗n) = exp(ν⃗n)∑3
j=1 exp(νn,j)

νn,j = α0,j + αb(n),j + αa(n),j

The parameters αb,j, and αa,j represent birthplace effects and area effects on risk level j.

6.2.3 Model for citizenship procedure success

Using a Bernoulli-logit framework, we independently model the probability of success as a
function of risk level, geographic region, and birth country. Let Ny denote the number of
surveyed individuals who have undergone a citizenship-obtaining procedure, and for n =
1, . . . , Ny, let yn = 1 indicate a procedure failure, meaning the individual is at a very high
risk of statelessness.

yn ∼ Bernoulli(ϕn)logit(ϕn) = β0 + βb(n) + βa(n) + βr(n) + βr:b(n)

Here βb represents a birthplace effect, βa represents an geographic area-level effect, βr rep-
resents a risk level effect, and βr:b is an interaction term which allows the effect of risk level
to vary by the birthplace of the individual.

The interaction terms are pooled according to risk level. For each risk level r and birthplace
b,

βr:b ∼ N(0, σ2
r).

6.2.4 Producing population level estimates

Let g = 1, . . . , G index the number of subgroups in the population (equal to the number of
birthplaces × the number of geographic areas). Population level estimates are produced by
first applying the risk level model to each subgroup to predict the proportion of the subgroup
at each risk level according to the birthplace and geographic area:

ν̂g,j = α0,j + αb(g),j + αa(g),j ρ̂g = softmax(ν̂g)

To obtain estimates of the number of individuals at each risk level in each subgroup, we
multiply the size of the subgroup by the risk level proportions. Let Pg denote the population
size of subgroup g. Then the number of individuals estimated to be in subgroup g and risk
level r is

P̂g,r = Pg · ρ̂g,r
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Table 5: Estimated populations at high-risk of failing citizenship procedure by initial risk
level

risk_level mean lower upper
high 155125.4 98750.69 195216.3
low 1987368.0 1668246.00 2294162.2

Then, for each subgroup g and risk level r, we apply the citizenship procedure success
model to estimate the proportion that would be unsuccessful in their citizenship-obtaining
procedure:

ϕ̂g,r = β0 + βb(g) + βa(g) + βr(g) + βr:b(g),

The estimates are then multiplied by the number of individuals in the appropriate subgroup
and risk level to produce an estimate of the number of individuals at very high risk of state-
lessness. These are aggregated across all subgroups and risk levels to produce a population
level estimate, ŷ. Note that the “no risk” category is assumed to have no individuals at a
very high risk of statelessness.

ŷ =
G∑

g=1

3∑
r=2

P̂g,r · ϕg,r

6.3 Illustrative results

Table 5 shows estimated populations at high-risk of failing citizenship procedure by initial
risk level. We can see that the majority of persons estimate to be at high risk are from
the initial “low risk” category. In total, around 2.1 million people are estimated to be at
high-risk of failing the procedure.

6.4 Summary and limitations

This section gave an overview of estimating populations who are at high risk of failing citizen-
ship procedures based on available survey data. The method relies on multilevel regression,
which firstly estimates an individual’s initial risk level, then estimates the probability they
would fail a citizenship procedure. Once these probabilities are estimated, they are combined
with population-level counts to obtain representative estimates of those at high-risk of state-
lessness. This method has advantages in that it is potentially broadly applicable to many
different countries that may collect similar data on citizenship procedure failures. The main
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disadvantage of the method as applied to the Cote d’Ivoire case is one of data availability.
In order for estimates to be post-stratified, we need population-level counts by each of the
variables included in the models. So even though it is very likely that initial risk level and
procedure failure are related to other characteristics in addition to birth country and region,
the models are limited to only including these variables so that the resulting estimated can
be post-stratified. We believe this approach could be strengthened if population-level counts
were available across additional dimensions.

7 Conclusion

This report outlined different approaches to possibly estimate stateless populations in dif-
ferent contexts. The first section outlined a demographic projection framework, which was
applied to data on the Shona population in Kenya, but can be extended and applied in other
situations where it would be useful to project populations backwards and forwards in time,
taking into consideration different data sources. The second section proposed a general ap-
proach to leverage census information across a number of different countries. The motivation
behind this proposal was the assumption that the degree of underreporting of statelessness
in some countries tells us something about the degree of underreporting in other, similar
countries. The next section outlined how ACS data can be used to estimate populations
at risk to statelessness over time, and proposed a probabilistic method to incorporate the
probability that an individual with certain characteristics is stateless at a given time point.
We then outlined an approach to estimate the number persons of unknown citizenship who
are stateless using data from the Netherlands. The final section presented a multilevel re-
gression and post-stratification method to estimate those at high risk of failing citizenship
procedures in Cote d’Ivoire. This method has strengths in its simplicity and potential ap-
plicability across countries, but could be strengthened from greater data availability that
would allow post-stratification across more granular demographic groups.

While the approaches presented all show potential in helping to estimate stateless popula-
tions, we were unable to produce reliable estimates for a wide range of countries, largely due
to data availability issues. In particular, the ‘overlap’ method, which perhaps is the mostly
widely applicable method (requiring relatively less data), was not run on actual data due to
the limited number of countries that had recent censuses available on IPUMS.

Going forward, we believe this work and the methods discussed here would benefit most from
collaboration with substantive area experts who could assist with data sourcing and other
knowledge that could help to inform model parameters. In this light, plans going forward
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will improving model specification and assumptions based on substantive knowledge. For
instance, in the Shona model, we plan to improve assumptions around initial population sizes
and in-migration flows to better reflect the true dynamic nature of Shona migrants entering
Kenya. For the at-risk populations case study and the Netherlands case study, the methods
used here would benefit most from substantive expert knowledge about the likelihood of
at-risk populations truly suffering from statelessness. While it is impossible to know this
information with certainty without additional data sources or observations from in-depth
interviews, for example, encoding likely ranges into probabilities would help to hone in on
reasonable estimates. In addition, considering other factors that are likely to be correlated
with probability of being stateless (above and beyond time since migration and language)
would also help to improve estimates. Going forward more generally, efforts to improve
the estimation of stateless populations worldwide would be most benefited by increased
systematic data collection endeavors, particularly in regularly-run, nationally-representative
sources, such as censuses and large-scale surveys.
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