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Abstract Reliable subnational mortality estimates are essential in the study of health
inequalities within a country. One of the difficulties in producing such estimates is the
presence of small populations among which the stochastic variation in death counts is
relatively high, and thus the underlyingmortality levels are unclear.We present a Bayesian
hierarchical model to estimate mortality at the subnational level. The model builds on
characteristic age patterns in mortality curves, which are constructed using principal
components from a set of reference mortality curves. Information on mortality rates are
pooled across geographic space and are smoothed over time. Testing of the model shows
reasonable estimates and uncertainty levels when it is applied both to simulated data that
mimic U.S. counties and to real data for French départements. The model estimates have
direct applications to the study of subregional health patterns and disparities.

Keywords Mortality . Subnational estimation . Bayesian hierarchical model . Principal
components . France

Introduction

To effectively study health disparities within a country, one must obtain reliable
subnational mortality estimates to quantify geographic differences accurately. There

Demography
DOI 10.1007/s13524-017-0618-7

* Monica Alexander
monicaalexander@berkeley.edu

1 Department of Demography, University of California, Berkeley, 2232 Piedmont Avenue, Berkeley,
CA 94720-2120, USA

2 Department of Sociology, University of Washington, Seattle, 211 Savery Hall, Box 353340,
Seattle, WA 98195-3340, USA

3 Institut National d’Études Démographiques, 133 Boulevard Dabout, 75020 Paris Cedex, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s13524-017-0618-7&domain=pdf
mailto:monicaalexander@berkeley.edu


is a large demand for estimates of small-area mortality as indicators of overall health
and well-being as well as for natural experiments that exploit policy changes at local
levels. Reliable mortality estimates for regional populations could help researchers to
better understand how place of residence and communities can affect health status
through both compositional and contextual mechanisms (Macintyre et al. 2002).

One of the difficulties in producing mortality estimates for subnational areas is the
presence of small populations in which the stochastic variation in death counts is
relatively high. For example, 10 % (approximately 300) of U.S. counties have
populations of less than 5,000, and 1 % of counties have populations less than 1,000
(U.S. Census Bureau 2015). The resulting mortality rates in small areas are often highly
erratic and may have zero death counts, meaning that the underlying true mortality
schedules are unclear.

The aim of this study is to formulate a model for estimating subnational mortality
rates across geographic areas with a wide variety of population sizes and death
counts. Resulting estimates would be useful for guiding future policy efforts to
improve the health of populations and to investigate the historical effect of public
health interventions and changes in the structure of local health programs. In this
article, we focus on developing the methodology to produce age- and sex-specific
mortality rates. We test our approach on simulated data that mimic U.S. counties
and on real data for French départements. However, the model is flexible enough to
be used in a wide range of situations.

Despite the growing literature in the field of small-area mortality estimation, the
demand for accurate, reliable, and consistent estimates has not yet been met. The
traditional life table approach assumes that deaths ya,x in a population in area a at age
x are Poisson-distributed: ya,x ~ Poisson(Pa,x · ma,x), where Pa,x is the population at risk,
and ma,x is the mortality rate. The maximum likelihood estimate of the mortality rate for
area a at age x is

m̂a;x ¼
ya;x
Pa;x

: ð1Þ

This approach essentially involves estimating as many fixed-effect parameters ma,x

as there are data points. In addition, this estimation process makes no reference to or
use of the information about mortality rates at other ages, in other areas, or at other time
points. Confidence intervals can be derived based on the distribution of deaths. For
small populations, though, stochastic variation is high, leading to large confidence
intervals and standard errors. Estimating mortality rates in small populations therefore
requires different types of approaches.

To avoid issues that arise in small-area mortality estimation, a common approach is
to aggregate mortality data across multiple years or across space to form larger
geographic areas. For example, recent work by Chetty et al. (2016) and Currie and
Schwandt (2016) looked at mortality inequalities in the United States using deaths and
income measures at the county level, but either data are aggregated across space and
time (Currie and Schwandt 2016) or results are not published for smaller populations
(in the case of Chetty et al. (2016), where the minimum population size is 20,000).
However, given the information lost in aggregating data from smaller areas, there is
value in employing other techniques to infer mortality levels and trends.
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One option that has been employed is to treat each small population as a stand-alone
population and model accordingly using traditional model life table approaches. For
example, Bravo and Malta (2010) outlined an approach for estimating life tables in
small populations, which they applied to regional areas of Portugal. They estimated
Gompertz-Makeham functions via generalized linear models, with an adjustment at
older ages. Another approach by Jarner and Kryger (2011) involved estimating old-age
mortality in small populations by first estimating parameters of a frailty model using a
larger reference population. However, approaches that treat small populations separate-
ly do not account for the likely relationships between the regional population estimates
or patterns over time. Other approaches in the United States have used county-level
covariates, such as socioeconomic status and education to predict county-level life
expectancy (Dwyer-Lindgren et al. 2016; Ezzati et al. 2008; Kindig and Cheng 2013;
Kulkarni et al. 2011; Srebotnjak et al. 2010). However, issues arise with using the
resulting estimates to infer relationships among health, poverty rates, and education
without endogeneity concerns.

In this article, we propose a new model that relies on a Bayesian hierarchical
framework, allowing information on mortality to be shared across time and through
space. This approach helps to inform the mortality patterns in smaller geographic areas,
for which uncertainty around the data is high. The modeling process produces uncer-
tainty intervals around the mortality estimates, which can then be translated into
uncertainty around other life table quantities (for example, life expectancy). In addition
to producing uncertainty intervals around the final estimates, the modeling process also
involves the estimation of other meaningful variance parameters that may relate to
variation in mortality within, or across, states. A Bayesian hierarchical approach has
been used previously in estimating mortality in small populations (see, e.g., Congdon
2014). However, our modeling approach is novel in that it combines demographic
knowledge about regularities in age-specific mortality with the flexibility of a Bayesian
hierarchical structure.

Method

We propose a model with an underlying functional form that captures regularities in age
patterns in mortality. We then build on this functional form within a Bayesian hierar-
chical framework, penalizing departures from the characteristic shapes across age as
well as sharing information across geographic areas and ensuring a relatively smooth
trend in mortality over time.

Bayesian hierarchical models have been used in a wide range of demographic
applications. For example, Bayesian hierarchical models are used by the United Nations
Population Division to produce probabilistic projections of population and life expectan-
cy (Raftery et al. 2012, 2013). Alkema and New (2014) developed a Bayesian hierar-
chical model for estimating country-specific under-5 mortality rates. Other examples can
be found in the study of mortality, fertility, and migration (e.g., Alkema et al. 2012; Bijak
2008; Congdon 2009; King and Soneji 2011; Sharrow et al. 2013). Our approach has
similarities to applications by authors in cause-of-death mortality estimation (Girosi and
King 2008) and cohort fertility projection (Schmertmann et al. 2014) but with a focus on
addressing small-area estimation issues rather than forecasting.
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Model Set-up

Let yx,a,t be the deaths at age x in area a at time t. We assume that deaths are
Poisson-distributed:

yx;a;t ∼ Poisson Px;a;t � mx;a;t
� �

; ð2Þ

where mx,a,t is the mortality rate at age x, area a, and time t; and Px,a,t is the
population at risk at age x, area a, and time t. We estimate mortality rates at ages
0, 1, 5, and then in five-year intervals up to 85+.

The mx,a,t are modeled on the log scale as follows:

log mx;a;t
� � ¼ β1;a;t � Y 1x þ β2;a;t � Y 2x þ β3;a;t � Y 3x þ ux;a;t; ð3Þ

where Ypx is the pth principal component of some set of standard mortality curves, and
ux,a,t is a random effect. The use of principal components has similarities with the Lee-
Carter approach (Lee and Carter 1992). Principal components create an underlying
structure of the model in which regularities in age patterns of human mortality can be
expressed. Many different kinds of mortality curve shapes can be expressed as a
combination of the components. Incorporating more than one principal component
allows for greater flexibility in the underlying shape of the mortality age schedule.

Principal components are obtained via a singular value decomposition (SVD) on a
matrix that contains a set of standard mortality curves. The SVD is a factorization of a
matrix, which is useful for explaining the main aspects of variation in the data. For
example, in the application to simulated U.S. counties discussed later, we use U.S. state
mortality rates from 1980–2010. Let X be a N × G matrix of log mortality rates, where
N is the number of observations, and G is the number of age groups. In the U.S. states
case, we have N = 50 × 31 = 1,550 observations ofG = 19 age groups. The SVD ofX is

X ¼ UDV
0
; ð4Þ

where U is a N × Nmatrix, D is a N × Gmatrix, and V is a G × Gmatrix. The first three
columns of V (the first three right-singular values of X) are Y1x, Y2x, and Y3x.

1

The first three principal components for U.S. state mortality curves from 1980–2010
are shown in Fig. 1.2 They are based on mortality curves on the log scale, three of
which are shown in the top-left graph: Florida in 1980, Hawaii in 1991, and California
in 2010. In total, there are 50 × 31 = 1,550 of these curves, from which the principal
components are derived. Broadly, the first principal component describes the overall
mortality curve. The second principal component allows mortality at younger ages to
be higher in relation to adult mortality. The third principal component allows adult
mortality to be higher in relation to mortality at young and old ages. For example, in
some regions of a country, child mortality might be relatively higher than the baseline

1 Throughout this article, we refer to the Ypx as principal components for simplicity, even though technically
Ypx is the pth vector of principal component loadings.
2 Data on age-specific mortality rates are available through the Centers for Disease Control and Prevention
(CDC) Wide-ranging Online Data for Epidemiologic Research (WONDER) tool (https://wonder.cdc.gov/).
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schedule. In other regions, where prevalence of deaths due to accidents is higher, adult
mortality would be higher than the baseline pattern.

The components capture overall patterns of mortality well; a wide range of mortality
curves can be expressed as a linear combination of these three components. It is
possible to include more or less than three principal components in the model for
log(mx,a,t). The more principal components used, the more flexible the fit. However,
after experimenting with a wide range of standard mortality curves, we found that
higher-order principal components generally did not display any regular patterns across
age but instead picked up on residual variance in the data set, which has limited use for
modeling purposes. Including the first three principal components in the model allows
for a reasonably flexible fit while including only components that have some demo-
graphic interpretation.

The addition of the random-effect term, ux,a,t, in the expression for log(mx,a,t)
accounts for potential overdispersion of deaths: that is, the case in which the variance
in deaths is greater than the mean, which otherwise would not be expected given the
assumption of Poisson-distributed deaths (Congdon 2009). These random effects are
assumed to be centered at 0, with an associated variance:

ux;a;t ∼ N 0;σxð Þ: ð5Þ
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Fig. 1 Example data and principal components of (logged) U.S. state mortality schedules: Males, 1980–2010
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The variance parameter varies by age group, allowing heterogeneity in some age
groups to be greater than in others. In practice, it is often the younger age groups, with
the lowest levels of mortality, that have the highest variation.

Pooling Information Across Geographic Area

To allow for information on the level and shape of mortality to be shared across
geographic space, we assume that the coefficients βp,a,t for a particular area are drawn
from a common distribution centered on a state (or country) mean:

βp;a;t ∼ N μβp;t
;σ2

βp;t

� �
; ð6Þ

where p indicates the principal component (p = 1, 2, 3). Larger areas in terms of population
size (and death counts) have a bigger effect on the overall means. The fewer data available
on deaths in an area, the closer the parameter estimates are to the mean parameter value. In
this way, mortality patterns in smaller areas are partially informed by mortality patterns in
larger areas. At the same time, mortality patterns in larger areas borrow little information
from the pooling process and are largely determined by their own observed death counts.

The influence of the geographic pooling is illustrated in Fig. 2. The charts illustrate
observed, true, and fitted log mortality rates for a hypothetical county with a population
of 5,000 males. The dashed line is the true underlying log mortality rate. The circles
represent the observed log mortality rates; these were simulated from the true rates
using Eq. (2). Gaps represent an observed death count of 0. The solid line and
associated shaded area are the fit and 95 % credible intervals, respectively. The graph
on the left shows a fit without geographic pooling. The graph on the right shows a fit
with geographic pooling and has an additional mean line derived from the mean
parameters, μβp;t

, which are informed by all counties in the state. The effect of pooling

is seen most in log mortality rates at younger ages, among which rates are low. Given
that many of the younger age groups have observed 0 death counts, the unpooled model
estimates log mortality rates that are much lower than the true rates. The pooled model
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Fig. 2 Illustrating the effect of geographic pooling. Model fitted without (left) and with (right) geographic
pooling. Data are simulated assuming a total population of 5,000
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estimate is pulled up closer to the mean estimate, benefiting from information on
young-age mortality from other counties.

In practice, the mean parameter values μβp;t
could be determined from any plausible

group of areas that share similar characteristics. We tested the model using state-level
mean parameter values, but other options include grouping areas by a smaller location
scale, by rural/urban area within state, or by a common age distribution.

Smoothing Across Time

We assume the parameters governing the shape of the mortality curve, βp,a,t, change
gradually and in a relatively regular pattern over time. We impose this smoothing by
penalizing the second-order differences across time in the mean parameters:

μβp;t
∼ N 2 ⋅μβp;t − 1

− μβp;t − 2
;σ2

μ
βp;t

� �
ð7Þ

for p = 1, 2, 3. This setup is penalizing differences from a linear trend in the mean
parameters. Smoothing the mean parameters, rather than the actual parameters,βp,a,t, still
allows formortality trends to depart from a smooth trajectory if suggested by the data. For
example, if a particular area suffered from an influenza outbreak—thus making mortality
higher than in previous years—the βp,a,t terms would allow for higher mortality.

The effect of smoothing parameters over time is shown in Fig. 3. The graph shows
the estimated median value of the parameter μβ1;t

over 31 years in a simulated U.S.

county model. The solid line shows the estimates without smoothing, and the dashed
line shows the effect of smoothing.

Adding Constraints to the Model for Total Areas

Although mortality rates are estimated for subnational populations, it is important that
these mortality rates, when aggregated to the state or national level, are consistent with
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Fig. 3 Illustrating the effect of smoothing over time. The solid line shows median estimates for μβ1;t
from a

model without smoothing imposed. The dashed line shows median estimates for μβ1;t
from a model with

smoothing imposed according to Eq. (7)
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the mortality rates observed at the aggregate level. To ensure that this is the case, we
add a constraint to the model specifying that the number of deaths in a state (or country)
is Poisson-distributed with a rate equal to the sum of all estimated deaths in all areas:

∑
A

a¼ 1
yx;a;t ∼ Poisson ∑

A

a¼1
Px;a;t ⋅mx;a;t
� �� �

; ð8Þ

where A is the total number of areas.
We assume that the deaths yx,a,t are conditionally independent; that is, given values

of Px,a,t and mx,a,t, the yx,a,t are independent, and thus the sum is also Poisson-
distributed. In practice, the added constraint makes little difference to the estimates
for any specific area. However, it ensures consistency between regional and national
estimates. We believe that this is an important feature of the model that is relevant for
most applications. Figure 4 shows estimates of life expectancy at birth for females for
each French département in 2008. (Data are described in the upcoming section,
Application to French Départements.) The resulting estimates show only negligible
differences between the constrained and unconstrained models.

Priors and Implementation

Noninformative priors were put on variance parameters. Operationally, we used a
uniform distribution between 0 and 40 for the standard deviations:

σβp;t
∼U 0; 40ð Þ ð9Þ

σμβp;t
∼U 0; 40ð Þ ð10Þ

σx ∼U 0; 40ð Þ: ð11Þ
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Fig. 4 Female life expectancy at birth estimates for France, 2008 (years): Constrained versus unconstrained model

M. Alexander et al.



The noninformative nature of these prior distributions means that posterior estimates of
the variance parameters were not constrained in any way. Choosing even more spread-
out uniform distributions as the priors (with a maximum larger than 40) had no effect
on the final estimates.

The model was fitted in a Bayesian framework using the statistical software R.
Samples were taken from the posterior distributions of the parameters via a Markov
Chain Monte Carlo (MCMC) algorithm. This was performed using JAGS software
(Plummer 2003). Standard diagnostic checks using trace plots and the Gelman and
Rubin diagnostic (Gelman and Rubin 1992) were used to check convergence.

Model Summary

The following set of equations summarizes the entire model setup. Deaths are assumed
to be Poisson-distributed (Eq. (12)), and the mortality rates that govern the Poisson
process are specified by a model, which is hierarchical in structure. The first level of the
hierarchy (Eq. (13)) gives an expression for log(mx,a,t). The second level (Eqs. (14) and
(15)) specifies distributions for the parameters in the first level (βp,a,t and ux,a,t). Finally,
the third level (Eqs. (16)–(19)) specifies the distribution for the parameters in the
second level (μβp;t

and the variance terms).

yx;a;t ∼Poisson Px;a;t ⋅mx;a;t
� � ð12Þ

log mx;a;t
� � ¼ β1;a;t ⋅Y 1x þ β2;a;t ⋅Y 2x þ β3;a;t ⋅Y 3x þ ux;a;t ð13Þ

βp;a;t ∼ N μβp;t
;σ2

βp;t

� �
ð14Þ

ux;a;t ∼N 0;σ2
x

� � ð15Þ

μβp;t
∼N 2 ⋅μβp;t − 1

− μβp;t − 2
;σ2

μβp;t

� �
ð16Þ

σβp;t
∼U 0; 40ð Þ ð17Þ

σμβp;t
∼U 0; 40ð Þ ð18Þ

σx ∼U 0; 40ð Þ: ð19Þ
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Results

Simulated Data

To test the model, we created a simulated data set of deaths and populations that
mimic counties within U.S. states. The true mortality rate in a county is based on a
specified population and age structure and the mortality rate in the state. The
mortality curve for a county can be altered to change shape via a Brass relational
model setup, assuming that

log
lx

l − lx

� �
¼ α þ β ⋅Yx; ð20Þ

where lx is the survivorship at age x in the county, and Yx is the survivorship at age x
in the state of interest. To alter the shape of the survivorship curve for a particular
county, the values of α and β were changed. The values of α and β were chosen
randomly from the ranges [−0.75, 0.75] and [0.7, 1.3], respectively, given that these
ranges translate to a reasonable range of commonly observed age-specific mortality
curves. We converted the survivorship rates to mortality rates using standard life
table relationships.

After we obtained the true mortality rate schedules, we simulated deaths
according to the relationship shown in Eq. (2). We tested a range of population
sizes, with the minimum county size being 1,000 people of a particular sex. At
this small population size, many simulated death counts for particular age groups
are equal to 0.

Figure 5 shows the true, simulated (observed) data and estimated mortality rates
on the log scale in three hypothetical counties that were in the same state but had
different population sizes. The points show the observed data, which are simulated
from the true underlying mortality rate, shown by the dashed line. For the smallest
county, which has 1,000 people, many of the observed death counts are 0, so the
data do not show up on the log scale. The solid line shows the estimated log
mortality rates, and the corresponding shaded area shows the 95 % credible
intervals. As the size of the county increases, the mortality pattern in the observed
data becomes more regular. As such, the uncertainty around the estimates decreases
with increased population size.

0 20 40 60 80

1e−06

1e−04

1e−02

County 1 

 Population = 1,000

Age

Fitted

True

Data

M
o

r
t
a

l
i
t
y

 
R

a
t
e

0 20 40 60 80

1e−06

1e−04

1e−02

County 2 

 Population = 10,000

Age

Fitted

True

Data

M
o

r
t
a

l
i
t
y

 
R

a
t
e

0 20 40 60 80

1e−06

1e−04

1e−02

County 3 

 Population = 100,000

Age

Fitted

True

Data

M
o

r
t
a

l
i
t
y

 
R

a
t
e

Fig. 5 True, simulated, and estimated mortality rates for three hypothetical counties
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Evaluation of Model Performance

To evaluate model performance, we compared the model fit with the fit of a simple
Loess smoother and Brass model. The Loess approach does not incorporate any
pooling of information or demographic regularities across age. The Brass estimation
process uses Eq. (20). We compared the methods of estimation using the simulated
data, where the true value of the mortality rates was known. For each area and time, we
estimated the root mean squared error (RMSE), defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

G
∑
G

x¼ 1
m̂x −m*

x

� �2
s

; ð21Þ

where m̂x is the estimated mortality rate at age x, m*
x is the true mortality rate, and G is

the number of age groups.
Table 1 shows the average RMSE for the three fits to a simulated data set containing

60 counties over 31 years (12 counties per size group). In all cases, the RMSE
decreases as county size increases. This is intuitive because as the county population
increases, there are fewer 0 death counts and thus more information about the shape of
the mortality curve. The average RMSE for the model is always lower than Loess or
Brass, irrespective of county size. Although the Brass RMSE seems reasonable, it is
most likely because the data were generated using a Brass relational model.

In addition, we also evaluated the relationship between the nominal and actual
coverage for the uncertainty intervals produced by the Bayesian model. Coverage is
defined as follows:

1

G
∑
G

x¼ 1
1 m*

x ≥ lx
	 


1 m*
x < rx

	 

; ð22Þ

where G is the number of age groups; m*
x is the true mortality rate for the xth age

group; and lx and rx are, respectively, the lower and upper bounds of the credible
intervals for the xth age group. Coverage at the 80 %, 90 %, and 95 % levels was
considered. Table 2 shows the average coverage for the proposed model, fit to 60
counties over 31 years. In general, actual coverage levels are close to the nominal
level, indicating that the model is well calibrated. The coverage level tends to
decrease as county size increases.

Table 1 Average root mean
squared error for model, Loess
and Brass fits

County Size

RMSE

Model Loess Brass

1,000 0.034 0.187 0.039

5,000 0.027 0.078 0.037

10,000 0.027 0.065 0.042

20,000 0.022 0.052 0.030

100,000 0.013 0.049 0.027
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Application to French Départements

We also tested the model on real mortality data, applied to death and population counts
by sex in French départements from the period 1975–2008.3 The annual life tables were
constructed by the Division des statistiques régionales, locales et urbaines (Regional,
Local and Urban Statistics Division) of the French Institut National de la Statistique et
des Études Économiques (National Institute for Statistics and Economic Studies
(INSEE)). The life tables were built from the vital statistics and census data also
collected and processed by INSEE. There are 96 mainland French départements
ranging in population size from approximately 35,000 to 1.5 million (for one sex).

We used national France mortality curves from 1975–2008 to form the set of
principal components used in estimation. The model was applied to both sexes
simultaneously. For illustration, Figs. 6 and 7, respectively, show the observed and
estimated log mortality rates for males in the departments Lozère and Somme in 1975
and 2008. Lozère has a male population of approximately 38,000, and Somme has a
male population of approximately 275,000. For both départements, mortality rates
decreased from 1975 to 2008. As a consequence, more 0 death counts are observed
for 2008 than for 1975, corresponding to more uncertainty around estimates in the more
recent year. Additionally, there is less uncertainty around the Somme estimates because
the population size is approximately seven times the population in Lozère.

After age-specific mortality rates are estimated, other mortality measures and asso-
ciated uncertainty can be calculated. Figure 8 shows estimates of life expectancy at
birth (e0) for males in 2008 by départements. Life expectancy is estimated to be highest
in areas around Paris and for the Midi-Pyrenees area and lowest in the northern part of
the country—a well-documented pattern (Barbieri 2013).

Uncertainty in life expectancy estimates is also easily obtained. Life expectancy is
calculated for each of the posterior samples of age-specific mortality rates. A 95 %
uncertainty interval (UI) is then obtained by calculating the 2.5th and 97.5th percen-
tiles. For example, the estimate for males’ life expectancy at birth in Paris in 2008 is
80.5 years (95 % UI: [79.4, 81.7]). For a smaller département, such as Lozère, the
estimate is 79.1 years (95 % UI: [77.2, 80.8]). Complete results for all French

3 Personal communication to Magali Barbieri by the Division des statistiques régionales, locales et urbaines,
INSEE (May 28, 2013). We chose to use French départements data because at the time of writing, data for all
U.S. counties were not readily available.

Table 2 Nominal versus actual
coverage of model
uncertainty intervals

County Size

Coverage Level (%)

80 90 95

1,000 0.871 0.952 0.982

5,000 0.799 0.896 0.940

10,000 0.749 0.853 0.890

20,000 0.744 0.833 0.891

100,000 0.763 0.865 0.901
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départements are available online.4 Life expectancy estimates produced by our method
are reasonably close to estimates produced by Institute National d’Études
Démographiques (INED) (Barbieri 2013), with the average difference in life expectan-
cy at birth across areas and years being approximately 0.5 years.

Another aspect of the results that could be of interest are the estimated variance
parameters. It is assumed that the βp,t parameters are normally distributed with mean
μp,t and variance σ2

βp;t
. The variance terms may tell us something about how the spread

of mortality outcomes is changing over time. Figure 9 shows the median and 95 %
credible intervals of the standard deviation parameters associated with β1 and β2 over
the period of estimation. Although there is no discernible trend in σβ1;t

, the parameter

for the β2 term, σβ2;t
, appears to be increasing over time. The β2 term is related to the

principal component that alters the magnitude of infant and child mortality compared
with mortality at older ages (see Fig. 1).

An increase in the variance parameter suggests that départements are diverging more
over time with respect to child mortality versus older mortality. Figure 10 illustrates two
départements that have relatively high and low values of β2. For Tarn, β2 is high,
which results from infant mortality being relatively low compared with adult mortality.
For Seine-Saint-Denis, the opposite is true.

Conclusion

We presented a novel method to estimate mortality rates by age and sex at the
subnational level. In our approach, we built on characteristic age patterns in mortality
curves, pooling information across geographic space and smoothing over time within
the framework of a Bayesian hierarchical model. When tested against simulated data,
the model outperformed estimates from a simple Loess smoother and Brass model,
especially for areas with smaller populations. The uncertainty in our estimates, reflected

4 See shiny.demog.berkeley.edu/monicah/French/.
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Fig. 6 Observed and estimated mortality rates, Lozère: Males, 1975 and 2008
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in the confidence intervals, is well calibrated. An application to real data for France
illustrates how various parameter estimates from the model help to assess trends in
overall mortality levels and inequalities within a country. The estimates produced by
the model have direct applications to the study of subregional health patterns and
disparities and how these evolve over time.

The model we outlined is proposed as a general framework for estimating mortality
rates in subpopulations. The user can easily alter the framework to best suit the situation
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Fig. 8 Life expectancy estimates for males, 2008 (e0, years)
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in which rates are being estimated. For example, the mean parameter values μβp;t
need

not be defined on a state/county basis but may instead be defined by a smaller
geographic area or based on some other characteristics, such as age distribution or
rurality of an area. Additionally, it is possible to alter the random effects to be spatially
structured, assuming some correlation in random effects by distance or of adjacent areas.

The focus of this project has been on estimation of past and present mortality trends
rather than future ones. However, forecasting of age- and sex-specific mortality rates in a
particular area can be obtained directly from model outputs. The mean parameters μβp;t

can be projected forward given the assumed linear time trend, which forms a basis to
infer other parameters for areas of interest. Given that the relevant variance parameters
are also estimated in the process, uncertainty around forecasts can also be inferred.

One of the contributions of our work is methodological. Estimates of mortality
measures for small areas, most notably life expectancy, have been proposed previously.
For example, Ezzati et al. (2008) used information about number of deaths, together
with covariates related to socioeconomic status, to estimate mortality rates. Congdon
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Fig. 9 Standard deviation of β1 and β2 over time
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(2014) developed a random-effects model to estimate life expectancy for subnational
areas. Our method builds on some elements presented in the literature while incorpo-
rating demographic knowledge about regularities in the Lexis surface of mortality rates
by age and over time. More specifically, we supplemented a Bayesian hierarchical
modeling framework to pool information across space and time, with a classic demo-
graphic approach to borrow information across age groups. In particular, our use of
principal components of schedules of log mortality rates was informed by a long
tradition of demographic modeling of mortality and can be considered an extension
of the Lee-Carter approach (Lee and Carter 1992).

In this article, we developed a general approach to complement classic demographic
modeling ideas within a solid statistical framework. The model that we proposed and
tested is quite minimalistic, relying on fairly simple rules for pooling across space and
smoothing over time. However, the geographic scale at which spatial pooling will be
implemented may depend on specific circumstances of different countries. Likewise,
the type of time smoothing may vary. A number of rules can be accommodated within
the framework that we propose.
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